分析 分两种情况进行讨论:点D'落在AB上,D'落在AD上,连接D'M,分别根据旋转的性质以及勾股定理进行计算,即可得出AD'的长为2或 $6-2\sqrt{6}$.
解答 解:如图,连接DM,![]()
∵AB=6,点E、M是边BC的三等分点,
∴CM=2,CD=6,
∴DM=$\sqrt{{6}^{2}+{2}^{2}}$=2$\sqrt{10}$,
①当点D'落在AB上时,连接D'M,则D'M=2$\sqrt{10}$,如图,![]()
∵BM=4,
∴BD'=$\sqrt{D'{M}^{2}-B{M}^{2}}$=$\sqrt{24}$=2$\sqrt{6}$,
∴AD'=AB-D'B=6-2$\sqrt{6}$;
②当D'落在AD上时,过M作MH⊥AD于H,如图,![]()
∵MH=CD=6,DH=CM=2,D'M=2$\sqrt{6}$,
∴D'H=$\sqrt{D'{M}^{2}-M{H}^{2}}$=$\sqrt{4}$=2,
∴AD'=AD-DH-D'H=6-2-2=2.
综上所述,AD'的长为2或 $6-2\sqrt{6}$;
故答案为:2或 $6-2\sqrt{6}$.
点评 本题主要考查了旋转的性质,勾股定理以及正方形的性质的综合应用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (x+2)(x-2)-3x | B. | x(x-3)-4 | C. | (x-1)(x+4) | D. | (x+1)(x-4) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com