精英家教网 > 初中数学 > 题目详情

如图,在△ABC和△DEF中,已知AB=DE,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是


  1. A.
    ∠A=∠D
  2. B.
    ∠B=∠E
  3. C.
    ∠C=∠F
  4. D.
    以上三个均可以
B
分析:根据三角形全等的判定中的SAS,即两边夹角.做题时根据已知条件,结合全等的判定方法逐一验证,要由位置选择方法.
解答:解:要使两三角形全等,且SAS已知AB=DE,BC=EF,还差夹角,即∠B=∠E;
A、C都不满足要求,D也就不能选取.
故选B.
点评:本题考查了三角形全等的判定方法;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知,如图,在△ABC和△EDB中,∠ACB=∠EBD=90°,点E在BC上,DE⊥AB交AB于F,且AB=ED.求证:DB=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△DEF中,AC∥DE,∠EFD与∠B互补,DE=mAC(m>1).试探索线段EF与AB的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需要加条件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”证明△ABC≌△ABD,则需要加条件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△ABD中,AC⊥BC,AD⊥BD,E是AB边上的中点.则DE
=
=
CE.(填>、=、<)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,请说明AE=BD的理由.

查看答案和解析>>

同步练习册答案