精英家教网 > 初中数学 > 题目详情
如图,抛物线y=-
1
2
x2+
1
2
x+6与x轴交于A、B两点,与y轴相交于C点.
(1)求△ABC的面积;
(2)已知E点(0,-3),在第一象限的抛物线上取点D,连接DE,使DE被x轴平分,试判定四边形ACDE的形状,并证明你的结论.
(1)根据抛物线的解析式可求得:A(-3,0),B(4,0),C(0,6)
S△ABC=
1
2
AB•OC=
1
2
×7×6=21.

(2)四边形ACDE是平行四边形,
理由:设DE交x轴于点P.
作DM⊥x轴,DN⊥y轴,M、N是垂足.
在△EPO和△DPM中,
∠POE=∠PMD
∠OPE=∠MPD
EP=DP

∴△EPO≌△DPM(AAS).
则DM=EO=3.点D的纵坐标为3.
由于D在抛物线上,则有3=-
1
2
x2+
1
2
x+6,
x=-2(舍去)或x=3.
因此:D(3,3),
AC=
OA2+OC2
=3
5
,ED=
ND2+NE2
=3
5

AE=
AO2+OE2
=3
2
,CD=
ND2+NC2
=3
2

AC=DE,AE=DC,
∴四边形ACDE是平行四边形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知平面直角坐标系xOy中,点A在抛物线y=
2
3
3
x2+
3
3
上,过A作AB⊥x轴于点B,AD⊥y轴于点D,将矩形ABOD沿对角线BD折叠后得A的对应点为A′,重叠部分(阴影)为△BDC.
(1)求证:△BDC是等腰三角形;
(2)如果A点的坐标是(1,m),求△BDC的面积;
(3)在(2)的条件下,求直线BC的解析式,并判断点A′是否落在已知的抛物线上?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC内接于半径为4的☉0,过0作BC的垂线,垂足为F,且交☉0于P、Q两点.OD、OE的长分别是抛物线y=x2+2mx+m2-9与x轴的两个交点的横坐标.
(1)求抛物线的解析式;
(2)是否存在直线l,使它经过抛物线与x轴的交点,并且原点到直线l的距离是2?如果存在,请求出直线l的解析式;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=-x2+kx+3的图象与x轴交于点(3,0)
(1)求函数的解析式;
(2)画出这个函数的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,点A在y轴上,⊙A与x轴交于B、C两点,与y轴交于点D(0,3)和点E(0,-1)
(1)求经过B、E、C三点的二次函数的解析式;
(2)若经过第一、二、三象限的一动直线切⊙A于点P(s,t),与x轴交于点M,连接PA并延长与⊙A交于点Q,设Q点的纵坐标为y,求y关于t的函数关系式,并观察图形写出自变量t的取值范围;
(3)在(2)的条件下,当y=0时,求切线PM的解析式,并借助函数图象,求出(1)中抛物线在切线PM下方的点的横坐标x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:a、b、c分别是△ABC的∠A、∠B、∠C的对边(a>b).二次函数y=(x-2a)x-2b(x-a)+c2的图象的顶点在x轴上,且sinA、sinB是关于x的方程(m+5)x2-(2m-5)x+m-8=0的两个根.
(1)判断△ABC的形状,关说明理由;
(2)求m的值;
(3)若这个三角形的外接圆面积为25π,求△ABC的内接正方形(四个顶点都在三角形三边上)的边长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=-
1
12
x2+
2
3
x+
5
3
,则该运动员此次掷铅球的成绩是______m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-x-
3
2
与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF.
(1)求a的值;
(2)求点F的坐标.

查看答案和解析>>

同步练习册答案