精英家教网 > 初中数学 > 题目详情
如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=-
1
12
x2+
2
3
x+
5
3
,则该运动员此次掷铅球的成绩是______m.
令函数式y=-
1
12
x2+
2
3
x+
5
3
中,y=0,
0=-
1
12
x2+
2
3
x+
5
3

整理得:x2-8x-20=0,
(x-10)(x+2)=0,
解得x1=10,x2=-2(舍去),
即该运动员此次掷铅球的成绩是10m.
故答案为:10.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点A(0,-3),且顶点P的坐标为(1,-4),
(1)求这个函数的关系式;
(2)在平面直角坐标系中,画出它的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-
1
2
x2+
1
2
x+6与x轴交于A、B两点,与y轴相交于C点.
(1)求△ABC的面积;
(2)已知E点(0,-3),在第一象限的抛物线上取点D,连接DE,使DE被x轴平分,试判定四边形ACDE的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=-
1
2
x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=-
1
2
x2+bx+c交于第四象限的F点.
(1)求该抛物线解析式与F点坐标;
(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒
13
2
个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.
①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.
②若△PMH是等腰三角形,请直接写出此时t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点如图1,顶点为M.
(1)求a、b的值;
(2)设抛物线与y轴的交点为Q,且直线y=-2x+9与直线OM交于点D(如图1).现将抛物线平移,保持顶点在直线OD上,当抛物线的顶点平移到D点时,Q点移至N点,求抛物线上的两点M、Q间所夹的曲线
MQ
扫过的区域的面积;
(3)将抛物线平移,当顶点M移至原点时,过点Q(0,3)作不平行于x轴的直线交抛物线于E,F两点(如图2).试探究:在y轴的负半轴上是否存在点P,使得∠EPQ=∠QPF?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=x+2的图象分别交轴、轴于A、B两点,O1为以OB为边长的正方形OBCD的对角线的交点.两动点P、Q同时从A点出发在四边形ABCD上运动,其中动点P以每秒
2
个单位长度的速度沿A→B→A运动后停止,动点Q以每秒2个单位长度的速度沿A→O→D→C→B运动.AO1交于轴于点E,设P、Q运动的时间为t秒.
(1)求经过A、B、C三点的抛物线的解析式;
(2)求出E点的坐标和S△ABE的值;
(3)当Q点运动在折线AD→DC上时,是否存在某一时刻t(秒),使得S△ABE:S△APQ=4:3?若存在,请确定t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一场足球比赛中,一球员从球门正前方10米处起脚射门,当球飞行的水平距离为6米时达到最高点,此时球高为3米.
(1)如图建立直角坐标系,当球飞行的路线为一抛物线时,求此抛物线的解析式.
(2)已知球门高为2.44米,问此球能否射中球门(不计其它情况).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别相交于A(-1,0)、B(3,0)、C(0,3)三点,其顶点为D.(1)求:经过A、B、C三点的抛物线的解析式;
(2)求四边形ABDC的面积;
(3)试判断△BCD与△COA是否相似?若相似写出证明过程;若不相似,请说明理由.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

服装店销售一种进价为50元的衬衣,生产厂家规定售价为60元-170元,当定价为60元时,平均每周可卖出70件,定价每涨价10元,每周少买5件,现将这种衬衣售价定为x元(规定x是10的整数倍),这种衬衣每周销售件数为y件,每周卖这种衬衣所得的利润为w元,
(1)请直接写出y与x的函数关系(不必写x的取值范围)
(2)请求出w与x的函数关系(不必写x的取值范围)
(3)要想每周取得2500元利润,并且让顾客得到实惠,应将售价定为多少元?

查看答案和解析>>

同步练习册答案