精英家教网 > 初中数学 > 题目详情
(2012•保定二模)如图,⊙B过平面直角系的原点O,交y轴于点A,交x轴于点C,∠ODC=60°,A(0,2),则弦OC的长为(  )
分析:过B作BM垂直于x轴,交x轴于点M,BN垂直于y轴,交y轴于点N,利用垂径定理得到M、N分别为OC、OA的中点,同时得到四边形BMON为矩形,根据矩形的对边相等可得出BM=ON,且都等于OA的一半,由A的坐标得到OA的长,进而确定出BM的长,由同弧所对的圆心角等于所对圆周角的2倍,求出∠OBC的度数,再由BO=BC,BM垂直于OC,利用三线合一得到BM为角平分线,得出∠OBM的度数,在直角三角形OBM中,利用锐角三角函数定义求出OM的长,由OC=2OM即可求出OC的长.
解答:解:过B作BM⊥x轴,BN⊥y轴,如图所示:
∴M、N分别为OC、OA的中点,
∴AN=ON,OM=CM,
又∵A(0,2),
∴OA=2,
又∵四边形BMON为矩形,
∴ON=BM=1,
∵∠ODC=60°,
∴∠OBC=120°,
又∵BO=CO,BM⊥OC,
∴∠OBM=60°,
在Rt△OBM中,BM=1,
则OM=BM•tan60°=
3

则OC=2OM=2
3

故选D
点评:此题考查了圆周角定理,垂径定理,坐标与图形性质,等腰三角形的性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•保定二模)有四张不透明的卡片(如图),除正面的数字不同外,其余都相同,现将它们背面向上洗匀,从中任意抽取两张,上面的数字之和恰好为零的概率为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•保定二模)计算-1×1的结果是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•保定二模)如图所示,在菱形ABCD中,点E,F分别为AB,AC的中点,菱形ABCD的周长为32,则EF的长等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•保定二模)如图,有一张矩形纸片ABCD,AD=5cm,AB=3cm,折叠使AB与AD重合,折痕AE;再将△AEB沿BE向右对折,使AE与CD相交于F,则S△CEF=
2cm2
2cm2

查看答案和解析>>

同步练习册答案