精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,已知⊙O是△ABC的外接圆,AB为⊙O的直径,AC=6cm,BC=8cm.
(1)求⊙O的半径;
(2)请用尺规作图作出点P,使得点P在优弧CAB上时,△PBC的面积最大,请保留作图痕迹,并求出△PBC面积的最大值.

【答案】
(1)解:∵AB为⊙O的直径,

∴∠C=90°,

在Rt△ABC中,∵AC=6,BC=8,

∴AB= =10,

∴⊙O的半径为5cm


(2)解:如图,作BC的垂直平分线交优弧CAB于P,交BC于D,

则BD=CD= BC=4,

在Rt△OBD中,OD= =3,

∴PD=3+5=8,

SPBC= PDBC= ×8×8=32.


【解析】(1)利用圆周角定理得到∠C=90°,则利用勾股定理可计算出AB=10,从而得到⊙O的半径;(2)如图,作BC的垂直平分线交优弧CAB于P,交BC于D,利用垂径定理得到BD=CD= BC=4,则利用勾股定理可计算出OD=3,然后利用三角形面积公式计算此时△PBC的面积.
【考点精析】关于本题考查的三角形的外接圆与外心,需要了解过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.

(1)填空:∠AOB= °,用m表示点A′的坐标:A′( );
(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;
(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:
①求a,b,m满足的关系式;
②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB切⊙O于点B,OA=6,sinA= ,弦BC∥OA.
(1)求AB的长;
(2)求四边形AOCB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形纸片ABCD中,EF∥AB,M,N是线段EF的两个动点,且MN= EF,若把该正方形纸片卷成一个圆柱,使点A与点B重合,若底面圆的直径为6cm,则正方形纸片上M,N两点间的距离是 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),在矩形ABCD中,AB=4,BC=3,点E是射线CD上的一个动点,把△BCE沿BE折叠,点C的对应点为F.

(1)若点F刚好落在线段AD的垂直平分线上时,求线段CE的长;
(2)若点F刚好落在线段AB的垂直平分线上时,求线段CE的长;
(3)当射线AF交线段CD于点G时,请直接写出CG的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.
(1)请画出树状图并写出所有可能得到的三位数;
(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=kx+b分别与x轴、y轴交于A、B两点,过点B的抛物线y=﹣ (x﹣2)2+m的顶点P在这条直线上,以AB为边向下方做正方形ABCD.

(1)当m=2时,k= , b=;当m=﹣1时,k= , b=
(2)根据(1)中的结果,用含m的代数式分别表示k与b,并证明你的结论;
(3)当正方形ABCD的顶点C落在抛物线的对称轴上时,求对应的抛物线的函数关系式;
(4)当正方形ABCD的顶点D落在抛物线上时,直接写出对应的直线y=kx+b的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,点D在BC边上,且BD=BC,过点B作CD的垂线交AC于点O,以O为圆心,OC为半径画圆.
(1)求证:AB是⊙O的切线;
(2)若AB=10,AD=2,求⊙O的半径.

查看答案和解析>>

同步练习册答案