精英家教网 > 初中数学 > 题目详情

函数数学公式是反比例函数,并且图象在一、三象限,则m=________.

3
分析:根据反比例函数的定义可得m2-10=-1,根据函数图象分布在第一、三象限内,可得m-2>0,然后求解即可.
解答:根据题意得,m2-10=-1且m-2>0,
解得m1=3,m2=-3且m>2,
所以m=3.
故答案为:3.
点评:本题考查了反比例函数的定义,反比例函数的性质,对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图是反比例函数y=
5-2mx
的图象的一支.根据图象回答下列问题:
(1)图象的另一支在哪个象限?常数m的取值范围是什么?
(2)若点A(m-3,b1)和点B(m-4,b2)是该反比例函数图象上的两点,请你判断b1与b2的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道,对于二次函数y=a(x+m)2+k的图象,可由函数y=ax2的图象进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距离
m2+k2
称为朋友距离.
由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数y=
k
x
都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”.
如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=
12+32
=
10

(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向
 
,再向下平移7单位,相应的朋友距离为
 

(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离.
(3)探究三:为函数y=
3x+4
x+1
和它的基本函数y=
1
x
,找到朋友路径,并求相应的朋友距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

市政府实施“万元增收工程”.农户小王自主创业,承包了部分土地种植果树.根据科学种植的经验,平均每棵甲种果树的产量y(千克)与种植棵数x(棵)之间满足关系y=-0.2x+40,平均每棵乙种果树的产量z(千克)与种植棵数x(棵)之间的部分对应值如下表:
种植棵数x(棵) 60 65 80 92
平均每棵乙种果树的产量z(千克) 32 30.5 26 22.4
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出平均每棵乙种果树的产量z(千克)与种植棵数x(棵)之间的函数关系式;
(2)若小王种植甲、乙两种果树共200棵,其中种植甲种果树m棵,且甲种果树的种植数量不超过总数量的40%,试求果园的总产量w(千克)与甲种果树的种植数量w(棵)之间的函数关系式,并求出小王种植甲种果树多少棵时,果园的总产量最大,最大是多少?
(3)果园丰收,获得最大总产量.小王希望将两种水果均以6元/千克销售完.可按预计价格销    售时销量不佳,只售出了总产量的
1
6
.于是小王将售价降低a%,并迅速销售了总产量的
1
3
,这时,小王觉得这样销售下去不划算,于是又在降价后的价格基础上提价0.7a%把剩余水果卖完.最终一算,小王所得收益仅比原预期收益少2160元.请通过计算估计出整数a的值.
(参考数据:352=1225,362=1296,372=1369,382=1444)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):
温度x/℃ -4 -2 0 2 4 4.5
植物每天高度增长量y/mm 41 49 49 41 25 19.75
由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.
(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;
(2)温度为多少时,这种植物每天高度增长量最大?
(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在直角坐标系中,点A是反比例函数y1=
kx
(x>0)
的图象上一点,AB⊥x轴的正半轴于B点,C是OB的中点;一次函数y2=ax+b的图象经过A、C两点,并交y轴于点D(0,-2),若S△AOD=4.
(1)求反比例函数和一次函数的解析式;
(2)观察图象,请指出,当y1≥y2时,x的取值范围.

查看答案和解析>>

同步练习册答案