精英家教网 > 初中数学 > 题目详情
如图所示,在直角坐标系中,点A是反比例函数y1=
kx
(x>0)
的图象上一点,AB⊥x轴的正半轴于B点,C是OB的中点;一次函数y2=ax+b的图象经过A、C两点,并交y轴于点D(0,-2),若S△AOD=4.
(1)求反比例函数和一次函数的解析式;
(2)观察图象,请指出,当y1≥y2时,x的取值范围.
分析:(1)由S△AOD=4,点D(0,-2),可求A的横坐标;由C是OB的中点,可得OD=AB求出A点纵坐标,从而求出反比例函数解析式;根据A、D两点坐标求一次函数解析式;
(2)观察图象知,在交点A的左边,y1≥y2,即可得出x的取值范围.
解答:解:(1)作AE⊥y轴于E,
∵S△AOD=4,OD=2,
1
2
OD•AE=4,
∴AE=4,
∵AB⊥OB,C为OB的中点,
∴∠DOC=∠ABC=90°,OC=BC,∠OCD=∠BCA,
∴Rt△DOC≌Rt△ABC,
∴AB=OD=2,
∴A(4,2),
将A(4,2)代入y1=
k
x
中,得k=8,
∴反比例函数的解析式为:y1=
8
x

将A(4,2)和D(0,-2)代入y2=ax+b,
4a+b=2
b=-2

解得:
a=1
b=-2

∴一次函数的解析式为:y2=x-2;

(2)根据图象只有在y轴的右侧的情况:
此时当y1≥y2时,0<x≤4.
点评:此题主要考查了待定系数法求出一次函数与反比例函数解析式以及通过观察图象解不等式,利用从交点看起,函数图象在上方的函数值大是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,精英家教网sin∠BOA=
35

求:(1)点B的坐标;(2)cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大丰市一模)如图所示,在直角坐标平面内,函数y=
mx
(x>0,m是常数)
的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD、DC、CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)四边形ABCD能否为菱形?如果能,请求出四边形ABCD为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD、DC、CB.

1.若△ABD的面积为4,求点B的坐标

2.求证:DC∥AB

3.四边形ABCD能否为菱形?如果能,请求出四边形ABCD 为菱形时,直线AB的函数解析式;如果不能,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD、DC、CB.

【小题1】若△ABD的面积为4,求点B的坐标
【小题2】求证:DC∥AB
【小题3】四边形ABCD能否为菱形?如果能,请求出四边形ABCD 为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省盐城市大丰市中考数学一模试卷(解析版) 题型:解答题

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD、DC、CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)四边形ABCD能否为菱形?如果能,请求出四边形ABCD为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案