【题目】如图所示,已知二次函数y=ax2+bx+c(a≠0)的顶点是(1,4),且图象过点A(3,0),与y轴交于点B.
(1)求二次函数y=ax2+bx+c的解析式;
(2)求直线AB的解析式;
(3)在直线AB上方的抛物线上是否存在一点C,使得S△ABC=.如果存在,请求出C点的坐标;如果不存在,请说明理由.
【答案】(1)y= -x2+2x+3;(2)y=﹣x+3;(3)(,).
【解析】
(1)先把点(1,4)代入y=ax2+bx+c化成顶点式,再把 A(3,0)代入y=ax2+bx+c;
(2)设直线AB的解析式为:y=kx+t,再将A(3,0)和B(0,3)代入即可;
(3)设C(x, -x2+2x+3)其中x>0,过C作CD∥y轴,交AB于D点,则D坐标为(x,-x+3),
再根据△ABC的面积求解.
解:(1)∵ (1,4) 是二次函数的顶点,
∴设二次函数的解析式为y=a(x-1)2+4,
又∵图象过点A(3,0),
∴代入可得4a+4=0,解得a=-1
∴y= -(x-1)2+4= -x2+2x+3,
(2)由上可知,B为(0,3),
设直线AB的解析式为:y=kx+t,
将A(3,0)和B(0,3)代入可得k=-1,b=3,
∴直线AB的解析式为:y=﹣x+3 ,
(3)∵C在直线AB上方的抛物线上,
∴可设C(x, -x2+2x+3)其中x>0,
过C作CD∥y轴,交AB于D点.
则D坐标为(x,-x+3),
又∵S△ABC=,∴ [(-x2+2x+3)-(-x+3)]×3=,
解得x1=x2=,代入-x2+2x+3得,
∴C点坐标为(,).
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(0,1).
(1)画出△ABC向右平移3个单位长度所得的△A1B1C1;写出C1点的坐标;
(2)画出将△ABC绕点B按逆时针方向旋转90°所得的△A2B2C2;写出C2点的坐标;
(3)在(2)的条件下求点A所经过路径的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点B在x轴的正半轴上,AO=AB,∠OAB=90°,OB=12,点C、D均在边OB上,且∠CAD=45°,若△ACO的面积等于△ABO面积的,则点D的坐标为 _______ 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC的三条边长分别为2,5,6,在△ABC所在平面内画一条直线,将△ABC分成两个三角形,使其中一个三角形为等腰三角形.
(1)这样的直线最多可以画 条;
(2)请在三个备用图中分别画出符合条件的一条直线,要求每个图中得到的等腰三角形腰长不同,尺规作图,不写作法,保留作图痕迹.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知二次函数中,函数与自变量的部分对应值如下表:
… | 1 | 0 | 1 | 2 | 3 | 4 | … | |
… | 10 | 5 | 2 | 1 | 2 | 5 | … |
(1)求该二次函数的解析式;
(2)当为何值时,有最小值,最小值是多少?
(3)若,两点都在该函数的图像上,试比较与的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.
(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com