精英家教网 > 初中数学 > 题目详情

作业宝如图,已知四边形ABCD中,BA>BC,DA=DC,BD平分∠ABC,请你猜想∠A与∠C的数量关系,并证明你的猜想.

答:∠A+∠C=180°.
证明:过D作DM⊥AB于M,DN⊥BC于N,
∵BD平分∠ABC,
∴∠AMD=∠N=90°,DM=DN,
在Rt△AMD和Rt△CND中,

∴Rt△AMD≌Rt△CND(HL),
∴∠DCN=∠A,
∵∠BCD+∠DCN=180°,
∴∠A+∠BCD=180°.
分析:过D作DM⊥AB于M,DN⊥BC于N,求出DM=DN,根据HL证Rt△AMD≌Rt△CND,推出∠DCN=∠A,根据∠BCD+∠DCN=180°推出即可.
点评:本题考查了角平分线性质,全等三角形的性质和判定的应用,注意:全等三角形的对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案