精英家教网 > 初中数学 > 题目详情

阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判定△ABC的形状.
解:∵a2c2-b2c2=a4-b4   ①
∴c2(a2-b2)=(a2+b2)(a2-b2)       ②
∴c2=a2+b2                      
∴△ABC是直角三角形
问:上述解题过程,从哪一步开始出现错误?
请写出该步的序号:_________;
错误的原因为_________;
本题正确的结论是_________

③  a2-b2可以为零  △ABC为等腰三角形或直角三角形
试题分析:由于②到③时等式两边都除以了a2-b2,如果a2-b2=0,根据等式的性质可知,此时不一定有③成立.
由a4+b2c2=b4+a2c2得:
a4-b4=a2c2-b2c2
(a2+b2)(a2-b2)=c2(a2-b2),
∴(a2+b2)(a2-b2)-c2(a2-b2)=0,
∴(a2-b2)(a2+b2-c2)=0,
∴a2-b2=0或a2+b2-c2=0,
即a=b或c2=a2+b2
∴△ABC为等腰三角形或直角三角形.
考点:本题考查的是勾股定理的逆定理
点评:解答本题的关键是熟记勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

26、请阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b+2c2=a4-b4,试判断△ABC的形状.
解:
∵a2c2-b2c2=a4-b4,A
∴c2(a2-b2)=(a2+b2)(a2-b2),B
∴c2=a2+b2,C
∴△ABC为直角三角形.D
问:
(1)在上述解题过程中,从哪一步开始出现错误:
第C步

(2)错误的原因是:
等式两边同时除以a2-b2

(3)本题正确的结论是:
直角三角形或等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

28、阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判定△ABC的形状.
解:∵a2c2-b2c2=a4-b4
∴c2(a2-b2)=(a2+b2)(a2-b2)-----------(1)
∴c2=a2+b2-----------------(2)
∴△ABC是直角三角形--------------(3)
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:
(,2)
.错误的原因为
忽略了a2-b2为0这种情况

(2)本题正确的结论是
直角三角形或等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

25、阅读下列解题过程:
已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
解:因为a2c2-b2c2=a4-b4,①
所以c2(a2-b2)=(a2-b2)(a2+b2)②.
所以c2=a2+b2.③
所以△ABC是直角三角形.
回答下列问题:
(ⅰ)上述解题过程,从哪一步开始出现错误?请写出该步代码为

(ⅱ)错误的原因为
忽略了a2-b2=0的可能

(ⅲ)请你将正确的解答过程写下来.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
解:∵a2c2-b2c2=a4-b4,①
∴c2(a2-b2)=(a2+b2)(a2-b2),②
∴c2=a2+b2,③
∴△ABC为直角三角形.
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号

(2)该步正确的写法应是
当a2-b2=0时,a=b;当a2-b2≠0时,a2+b2=c2
当a2-b2=0时,a=b;当a2-b2≠0时,a2+b2=c2

(3)本题正确的结论应是
△ABC为直角三角形或等腰三角形或等腰直角三角形
△ABC为直角三角形或等腰三角形或等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状。
解:∵ a2c2-b2c2=a4-b4,                     ①
∴ c2(a2-b2)=(a2 + b2)(a2-b2),       ②
∴ c2= a2+b2,                            ③
∴ △ABC为直角三角形。
问:
【小题1】上述解题过程,从哪一步开始出现错误?请写出该步的代号       
【小题2】该步正确的写法应是                   
【小题3】本题正确的结论应是                     

查看答案和解析>>

同步练习册答案