精英家教网 > 初中数学 > 题目详情
16.在正方形ABCD中,连接BD.
(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.
(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.
①依题意补全图1;
②用等式表示线段BM、DN和MN之间的数量关系,并证明.
(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)

分析 (1)利用等腰直角三角形的性质即可;
(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用勾股定理得到FB2+BM2=FM2,再判断出FM=MN即可;
(3)利用△CEF周长是正方形ABCD周长的一半,判断出EF=EG,再利用(2)证明即可.

解答 解:(1)∵BD是正方形ABCD的对角线,
∴∠ABD=∠ADB=45°,
∵AE⊥BD,
∴∠ABE=∠BAE=45°,
(2)①依题意补全图形,如图1所示,

②BM、DN和MN之间的数量关系是BM2+MD2=MN2
将△AND绕点D顺时针旋转90°,得到△AFB,
∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,
∵在正方形ABCD中,AE⊥BD,
∴∠ADB=∠ABD=45°,
∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,
在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2
∵旋转△ANE得到AB1E1
∴∠E1AB1=45°,
∴∠BAB1+∠DAN=90°-45°=45°,
∵∠BAF=DAN,
∴∠BAB1+∠BAF=45°,
∴∠FAM=45°,
∴∠FAM=∠E1AB1
∵AM=AM,AF=AN,
∴△AFM≌△ANM,
∴FM=MN,
∵FB2+BM2=FM2
∴DN2+BM2=MN2
(3)如图2,

将△ADF绕点A顺时针旋转90°得到△ABG,
∴DF=GB,
∵正方形ABCD的周长为4AB,
△CEF周长为EF+EC+CF,
∵△CEF周长是正方形ABCD周长的一半,
∴4AB=2(EF+EC+CF),
∴2AB=EF+EC+CF
∵EC=AB-BE,CF=AB-DF,
∴2AB=EF+AB-BE+AB-DF,
∴EF=DF+BE,
∵DF=GB,
∴EF=GB+BE=GE,
由旋转得到AD=AG=AB,
∵AM=AM,
∴△AEG≌△AEF,
∠EAG=∠EAF=45°,
和(2)的②一样,得到DN2+BM2=MN2

点评 此题是四边形综合题,主要考查了正方形的性质,旋转的性质,三角形的全等,判断出三角形全等(△AFM≌△ANM,得到FM=MM),是解本题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.在△ABC中,AB=AC,D为射线BC上一点,DB=DA,E为射线AD上一点,且AE=CD,连接BE.
(1)如图1,若∠ADB=120°,AC=$\sqrt{3}$,求DE的长;
(2)如图2,若BE=2CD,连接CE并延长,交AB于点F,求证:CE=2EF;
(3)如图3,若BE⊥AD,垂足为点E,求证:AE2+$\frac{1}{4}B{E}^{2}=\frac{1}{4}A{D}^{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,点P为反比例函数y=$\frac{1}{x}$(x>0)图象上一点,以点P为圆心作圆,且该圆恰与两坐标轴都相切.在y轴任取一点E,连接PE并过点P作直线PE的垂线与x轴交于点F,则线段OE与线段OF的长度可能满足的数量关系式是OF-OE=2或OE-OF=2或OF+OE=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角分线.
(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);
(2)试判断直线BC与⊙O的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是(  )
A.$\sqrt{3}$,$\sqrt{4}$,$\sqrt{5}$B.2,3,4C.6,7,8D.1,$\sqrt{2}$,$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图①已知抛物线y=ax2-3ax-4a(a<0)的图象与x轴交于A、B两点(A在B的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴的交点E.
(1)抛物线的对称轴与x轴的交点E坐标为($\frac{3}{2}$,0),点A的坐标为(-1,0);
(2)若以E为圆心的圆与y轴和直线BC都相切,试求出抛物线的解析式;
(3)在(2)的条件下,如图②Q(m,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,将△CMN沿CN翻折,M的对应点为M′.在图②中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,四边形ABCD是矩形,将矩形折叠,使得点D落在BC边上.折痕经过点A,作出折叠后的图形(要求尺规作图,保留作图痕迹,不写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,两座建筑物AB与CD,其地面距离BD为60米,E为BD的中点,从E点测得A的仰角为30°,从C处测得E的俯角为60°,现准备在点A与点C之间拉一条绳子挂上小彩旗(不计绳子弯曲),求绳子AC的长度.(结果保留一位小数,$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.设关于x的方程x2+(a-3)x+3a=0有两个不相等的实数根x1、x2,且x1<2<x2,那么a的取值范围是a<$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案