精英家教网 > 初中数学 > 题目详情

作业宝如图,在平行四边形ABCD中,AE:EB=2:3.
(1)求△AEF和△CDF的周长比;
(2)若S△AEF=8cm2,求S△CDF

解:(1)∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,
∴△AEF∽△CDF,
∴C△AEF:C△CDF=AE:CD=AE:AB,
∵AE:EB=2:3,
∴AE:AB=2:5,
∴C△AEF:C△CDF=2:5;

(2)∵△AEF∽△CDF,
∴S△AEF:S△CDF=4:25,
∵S△AEF=8cm2
∴S△CDF=50cm2
分析:(1)根据平行四边形的对边平行且相等可得AB∥DC,AB=DC,然后求出△AEF和△CDF相似,根据相似三角形周长的比等于相似比可得周长之比等于AE:CD,再根据AE:EB=2:3求出AE:CD,从而得解;
(2)根据相似三角形面积的比等于相似比的平方列式计算即可得解.
点评:本题考查了相似三角形的判定与性质,平行四边形的性质,由平行线判定相似三角形是最常用的方法,还利用了相似三角形周长的比等于对应边的比,面积的比等于相似比的平方的性质,熟记性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,在平行四边形ABCD中,EF∥AD,GH∥AB,EF、GH相交于点O,则图中共有
9
个平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,证明:四边形DFBE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.点M是边AD上一点,且DM:AD=1:3.点E、F分别从A、C同时出发,以1厘米/秒的速度分别沿AB、CB向点B运动(当点F运动到点B时,点E随之停止运动),EM、CD精英家教网的延长线交于点P,FP交AD于点Q.设运动时间为x秒,线段PC的长为y厘米.
(1)求y与x之间函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,PF⊥AD?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,AB=2
2
AO=
3
OB=
5
,则下列结论中不正确的是(  )
A、AC⊥BD
B、四边形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•同安区一模)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为
4cm
4cm

查看答案和解析>>

同步练习册答案