精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠C=90°,AB=10,sin∠A= ,求BC的长和tan∠B的值.

【答案】解:在Rt△ABC中,∠C=90°,AB=10,sinA= = , ∴BC=4,
根据勾股定理得:AC= =2
则tanB= = =
【解析】在直角三角形ABC中,根据sinA的值及AB的长,利用锐角三角函数定义求出BC的长,再利用勾股定理求出AC的长,利用锐角三角函数定义即可求出tanB的值.
【考点精析】根据题目的已知条件,利用解直角三角形的相关知识可以得到问题的答案,需要掌握解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一次函数与一次函数的图象的交点的纵坐标为

(1)的值;

(2) 时,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算:|﹣2|﹣ +(﹣2013)0
(2)计算:(1+ )÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AD>AB.
(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于(
A.3:4
B. :2
C. :2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.

(1)求点A的坐标;
(2)若△OBC是等腰三角形,求此抛物线的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1x2 . 求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块三角形的土地,它的一条边BC=100米,BC边上的高AH=80米.某单位要沿着边BC修一座底面是矩形DEFG的大楼,DG分别在边ABAC上.若大楼的宽是40米(即DE=40米),求这个矩形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方程3x2-4x=2的根是(    )
A.x1=-2,x2=1
B.x1= ,x2=
C.x1= ,x2=
D.x1= ,x2=

查看答案和解析>>

同步练习册答案