精英家教网 > 初中数学 > 题目详情

如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.

(1)求点Q运动的速度;
(2)求图2中线段FG的函数关系式;
(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.

(1)点Q运动的速度是1cm/s;(2);(3)存在,t=或t=.

解析试题分析:(1)根据函数图象中E点所代表的实际意义求解.E点表示点P运动到与点B重合时的情形,运动时间为3s,可得AB=6cm;再由SAPQ=,可求得AQ的长度,进而得到点Q的运动速度;
(2)函数图象中线段FG,表示点Q运动至终点D之后停止运动,而点P在线段CD上继续运动的情形.如答图2所示,求出S的表达式,并确定t的取值范围;
(3)当点P在AB上运动时,PQ将菱形ABCD分成△APQ和五边形PBCDQ两部分,如答图3所示,求出t的值;当点P在BC上运动时,PQ将菱形分为梯形ABPQ和梯形PCDQ两部分,如答图4所示,求出t的值.
试题解析:(1)由题意,可知题图2中点E表示点P运动至点B时的情形,所用时间为3s,则菱形的边长AB=2×3=6cm.此时如答图1所示:

AQ边上的高h=AB•sin60°=6×=cm, S=SAPQ= AQ•h=AQ×3=,解得AQ=3cm.∴点Q的运动速度为:3÷3=1cm/s.(2)由题意,可知题图2中FG段表示点P在线段CD上运动时的情形.如答图2所示:

点Q运动至点D所需时间为:6÷1=6s,点P运动至点C所需时间为12÷2=6s,至终点D所需时间为18÷2=9s.
因此在FG段内,点Q运动至点D停止运动,点P在线段CD上继续运动,且时间t的取值范围为:6≤t≤9.过点P作PE⊥AD交AD的延长线于点E,则PE=PD•sin60°=(18-2t)×,
S=SAPQ=AD•PE=×6×(?+)=.
∴FG段的函数表达式为:S=(6≤t≤9).
(3)菱形ABCD的面积为:6×6×sin60°=18,
当点P在AB上运动时,PQ将菱形ABCD分成△APQ和五边形PBCDQ两部分,如答图3所示.
此时△APQ的面积S=AQ•AP•sin60°=t•2t×=,
根据题意,得=,
解得:t=s,

当点P在BC上运动时,PQ将菱形分为梯形ABPQ和梯形PCDQ两部分,如答图4所示.
此时,有S梯形ABPQ=S菱形ABCD,即(2t-6+t)×6×=×18,
解得t=s,
答:存在,当t=时,使PQ将菱形ABCD的面积恰好分成1:5的两部分.
考点:1、相似形综合题;2、动点问题的函数图象.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,△ABC在坐标平面内三个顶点的坐标分别为A(1,2)、B(3,3)、C(3,1).

(1)根据题意,请你在图中画出△ABC;
(2)在原图中,以B为位似中心,画出△A′BC′使它与△ABC位似且位似比是3:1,并写出顶点A′和C′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①,已知线段AB=8,以AB为直径作半圆O,再以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D。

(1)判断线段AP与PD的大小关系,并说明理由;
(2)连接PC,当∠ACP=600时,求弧AD的长;
(3)过点D作DE⊥AB,垂足为E(如图②),设AP=x,OE=y,求y与x之间的函数关系式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD是矩形,且DE⊥CF.则       (填“<”或“=”或“>”);
(2)如图2,若四边形ABCD是平行四边形,试探究:
当∠B与∠EGC满足什么关系时,使得=成立?并证明你的结论;
(3)如图3,若BA="BC=" 3,DA="DC=" 4,∠BAD= 90°,DE⊥CF.则的值为        

图1                     图2                     图3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从A、B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),

解答下列问题:
(1)当为何值时,△BPQ为直角三角形;
(2)设△BPQ的面积为S(cm2),求S与的函数关系式;
(3)作QR∥BA交AC于点R,连结PR,当为何值时,△APR∽△PRQ ?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

晚上,小亮走在大街上.他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米.求路灯的高.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.

求证:(1)点F是DC上一点,连接EF,交AC于点O(如图1),△AOE∽△COF;
(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD,垂足为E.

(1)求证:△ABE∽△DBC;
(2)求线段AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,矩形ABCD中,AB=12cm,AD=16cm,动点E、F分别从A点、C点同时出发,均以2cm/s的速度分别沿AD向D点和沿CB向B点运动。

(1)经过几秒首次可使EF⊥AC?
(2)若EF⊥AC,在线段AC上,是否存在一点P,使?若存在,请说明P点的位置,并予以证明;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案