精英家教网 > 初中数学 > 题目详情

已知抛物线y=3ax2+2bx+c
(1)若a=b=1,c=-1,求该抛物线与x轴的交点坐标;
(2)若a+b+c=1,是否存在实数x0,使得相应的y=1?若有,请指明有几个并证明你的结论;若没有,阐述理由;
(3)若a=数学公式,c=2+b且抛物线在-1≤x≤2区间上的最小值是-3,求b的值.

解:(1)当a=b=1,c=-1,时,抛物线为y=3x2+2x-1,
∵方程3x2+2x-1=0的两个根为x1=-1,x2=
∴该抛物线与x轴交点的坐标是(-1,0)和(,0);

(2)由y=1得3ax2+2bx+c=1,
△=4b2-12a(c-1)
=4b2-12a(-a-b)
=4b2+12ab+12a2
=4(b2+3ab+3a2
=4[(b+a)2+a2],
∵a≠0,
∴△>0,
∴方程3ax2+2bx+c=1有两个不相等实数根,
即存在两个不同实数x0,使得相应y=1;

(3)a=,c-b=2,则抛物线可化为y=x2+2bx+b+2,其对称轴为x=-b,
当x=-b<-1时,即b>1,则有抛物线在x=-1时取最小值为-3,
此时-3=(-1)2+2×(-1)b+b+2,
解得:b=6,符合题意;
当x=-b>2时,即b<-2,则有抛物线在x=2时取最小值为-3,
此时-3=22+2×2b+b+2,
解得:b=-,不合题意,舍去.
当-1≤-b≤2时,即-2≤b≤1,则有抛物线在x=-b时取最小值为-3,
此时-3=(-b)2+2×(-b)b+b+2,
化简得:b2-b-5=0,
解得:b=(不合题意,舍去),b=
综上可得:b=6或b=
分析:(1)将a、b、c的值代入,可得出抛物线解析式,从而可求解抛物线与x轴的交点坐标;
(2)由y=1得3ax2+2bx+c=1,表示出方程的判别式的表达式,利用配方法及完全平方的非负性即可判断出结论;
(3)a=,c-b=2,则抛物线可化为y=x2+2bx+b+2,其对称轴为x=-b,以-1≤x≤2为区间,讨论b的取值,根据最小值为-3,可得出方程,求出b的值即可.
点评:本题考查了二次函数的综合,涉及了一元二次方程的解,求根公式及根与系数的关系,解答本题的难点在第三问,关键是分类讨论,此题难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=ax2+3ax+b交x轴分别于A、B(1,0),交y轴于C(0,2).
(1)求此抛物线的解析式;
(2)如图(1),P为抛物线第三象限的点,若S△PAC=2S△PBC,求P点坐标;
(3)如图(2),D为抛物线的顶点,在抛物线上是否存在点Q,使△ADQ为锐角三角形?若存在,求出Q点横坐标的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2-3ax+4,
(1)求抛物线的对称轴;
(2)若抛物线与x轴交于A(-1,0)、B两点,且过第一象限上点D(m,m+1),求sin∠DAB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=ax2-3ax+4,
(1)求抛物线的对称轴;
(2)若抛物线与x轴交于A(-1,0)、B两点,且过第一象限上点D(m,m+1),求sin∠DAB.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年福建省厦门市松柏中学九年级(上)期中数学试卷(解析版) 题型:解答题

已知抛物线y=ax2-3ax+4,
(1)求抛物线的对称轴;
(2)若抛物线与x轴交于A(-1,0)、B两点,且过第一象限上点D(m,m+1),求sin∠DAB.

查看答案和解析>>

科目:初中数学 来源:2010年湖北省武汉市中考数学模拟试卷(13)(解析版) 题型:解答题

已知抛物线y=ax2+3ax+b交x轴分别于A、B(1,0),交y轴于C(0,2).
(1)求此抛物线的解析式;
(2)如图(1),P为抛物线第三象限的点,若S△PAC=2S△PBC,求P点坐标;
(3)如图(2),D为抛物线的顶点,在抛物线上是否存在点Q,使△ADQ为锐角三角形?若存在,求出Q点横坐标的取值范围.

查看答案和解析>>

同步练习册答案