精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCDBC中,∠ACB=∠DBC90°EBC的中点,EFABABDE

1)求证:BCDB

2)若BD8cm,求AC的长.

【答案】1)见解析; 24

【解析】

1)由DEAB,可得∠BFE90°,由直角三角形两锐角互余,可得∠ABC+DEB90°,由∠ACB90°,由直角三角形两锐角互余,可得∠ABC+A90°,根据同角的余角相等,可得∠A=∠DEB,然后根据AAS判断△ABC≌△EDB,根据全等三角形的对应边相等即可得到BDBC

2)由(1)可知△ABC≌△EDB,根据全等三角形的对应边相等,得到ACBE,由EBC的中点,得到BE

1)∵DEAB,可得∠BFE90°

∴∠ABC+DEB90°

∵∠ACB90°

∴∠ABC+A90°

∴∠A=∠DEB

在△ABC和△EDB中,

∴△ABC≌△EDBAAS),

BDBC

2)∵△ABC≌△EDB

ACBE

EBC的中点,BD8cm

BEcm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下有三个小球中随机取出一个小球,记下数字y.

(1)计算由x、y确定的点(x,y)在函数y=﹣x+6图象上的概率;

(2)小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班“数学兴趣小组”对函数y+x的图象与性质进行了探究,探究过程如下,请补充完整.

(1)函数y+x的自变量x的取值范围是   

(2)下表是yx的几组对应值.

x

3

2

1

0

2

3

4

5

y

1

3

m

m的值;

(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;

(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(23),结合函数的图象,写出该函数的其它性质(一条即可)   

(5)小明发现,该函数的图象关于点(      )成中心对称;

该函数的图象与一条垂直于x轴的直线无交点,则这条直线为   

直线ym与该函数的图象无交点,则m的取值范围为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=ACB=30°DBC上一点,且∠DAB=45°

(1) 求∠DAC的度数.

(2) 求证:ACD是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=ACAB>BC,点D在边BC上,CD=2BD,点EF在线段AD上,∠1=2=BAC,若ABC的面积为18,则ABECDF的面积之和是(

A.6B.8C.9D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:下列结论:甲乙两地相距600 千米;慢车的速度是60千米/小时;两车相距300千米时,x=2;④慢车走400千米时快车已到达甲地.其中正确的是___________________ .(填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,

(1)求DE的长;

(2)过点EF作EF⊥CE,交AB于点F,求BF的长;

(3)过点E作EG⊥CE,交CD于点G,求DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)(观察发现)如图 1ABC CDE 都是等边三角形,且点 BCE 在一条直线上,连接 BD AEBDAE 相交于点 P,则线段 BD AE 的数量关系是 BD AE 相交构成的锐角的度数是 .(只要求写出结论,不必说明理由)

2)(深入探究 1)如图 2ABC CDE 都是等边三角形,连接 BD AEBDAE 相交于点 P,猜想线段 BD AE 的数量关系,以及 BD AE 相交构成的锐角的度数. 请说明理由 结论:

理由:_______________________

3)(深入探究 2)如图 3ABC CDE 都是等腰直角三角形,且∠ACB=∠DCE90°,连接 ADBEQ AD 中点,连接 QC 并延长交 BE K. 求证:QKBE.

查看答案和解析>>

同步练习册答案