分析:由抛物线的开口方向判断a的符号;然后结合对称轴判断b的符号;根据抛物线的对称轴、抛物线与x的一个交点可以推知与x的另一个交点的坐标;由二次函数图象上点的坐标特征可以推知x=1满足该抛物线的解析式.
解答:解:①根据抛物线是开口方向向上可以判定a>0;
∵对称轴x=-
=-1,
∴b=2a>0;
∵该抛物线与y轴交于负半轴,
∴c<0,
∴abc<0;
故本选项正确;
②由①知,b=2a;
故本选项错误;
③∵该抛物线与x轴交于点(1,0),
∴x=1满足该抛物线方程,
∴a+b+c=0;
故本选项正确;
④设该抛物线与x轴交于点(x,0)),
则由对称轴x=-1,得
=-1,
解得,x=-3;
∴ax
2+bx+c=0的两根分别为-3和1;
故本选项正确;
⑤根据图示知,当x=-4时,y>0,
∴16a-4b+c>0,
由①知,b=2a,
∴8a+c>0;
故本选项正确;
综合①②③④⑤,上述正确的①③④⑤;
故答案是:①③④⑤.
点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.