分析 (1)根据速度等于路程除以时间进行解答即可;
(2)首先设y与x之间的函数关系式为y=kx+b,根据图象可得直线经过(1.5,90)(3,0),利用待定系数法把此两点坐标代入y=kx+b,即可求出一次函数关系式;
(3)利用甲从B地返回A地的过程中,y与x之间的函数关系式算出y的值,即可得到2小时时骑摩托车所行驶的路程,再根据路程与时间算出摩托车的速度,再用总路程90千米÷摩托车的速度可得乙从A地到B地用了多长时间.
解答 解:(1)甲前往B地时的平均速度为$\frac{90}{1}=90$千米/小时,返回A地时的平均速度为$\frac{90}{3-1.5}=60$千米/小时,
故答案为:90;60;
(2)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b(k≠0),根据题意得:
$\left\{\begin{array}{l}{3k+b=0}\\{1.5k+b=90}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-60}\\{b=180}\end{array}\right.$.
故y=-60x+180(1.5≤x≤3);
(3)当x=2时,y=-60×2+180=60,
∴骑摩托车的速度为60÷2=30(千米/时),
∴乙从A地到B地用时为90÷30=3(小时).
点评 此题主要考查了一次函数的应用,关键是看懂图象所表示的意义,利用待定系数法求出甲从B地返回A地的过程中,y与x之间的函数关系式.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com