分析 (1)连接AD、OD,则AD⊥BC,D为BC中点.OD为中位线,则OD∥AC,根据DF⊥AC可得OD⊥DF.得证;
(2)连接OE,利用(1)的结论得∠ABC=∠ACB=67.5°,易得∠BAC=45°,得出∠AOE=90°,利用扇形的面积公式和三角形的面积公式得出结论.
解答
(1)证明:连接AD,OD.
∵AB是直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴D是BC的中点,
∵O是AB的中点,
∴OD∥AC,
∴∠ODF+∠DFA=180°,
∵DF⊥AC,
∴∠DFA=90°.
∴∠ODF=90°.
∴OD⊥DF
∴DF是⊙O的切线;
(2)连接OE,
∵∠ADB=∠ADC=90°,∠DFC=∠DFA=90°,
∴∠DAC=∠CDF=22.5°,
∵AB=AC,D是BC中点,
∴∠BAC=2∠DAC=2×22.5°=45°,
∵OA=OE,
∴∠OEA=∠BAC=45°.
∴∠AOE=90°,
∵AE=4$\sqrt{2}$,
∴OA=OE=4.
S阴影=S扇形AOE-S△AOE=4π-8.
点评 本题考查切线的判定、等腰三角形的判定和性质、扇形的面积公式等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,学会用分割法求阴影部分面积,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com