精英家教网 > 初中数学 > 题目详情
如图,直线y=kx+4与函数y=
m
x
(x>0,m>0)的图象交于A、B两点,且与x、y轴分别交于C、D两点.
(1)若△COD的面积是△AOB的面积的
2
倍,求k与m之间的函数关系式;
(2)在(1)的条件下,是否存在k和m,使得以AB为直径的圆经过点P(2,0)?若存在,求出k和m的值;若不存在,请说明理由.
(1)设A(x1,y1),B(x2,y2)(其中x1<x2,y1>y2),
∵S△COD=
2
S△AOB
∴S△COD=
2
(S△AOD-S△BOD
1
2
•OC•OD=
2
1
2
•OD•y1-
1
2
•OD•y2),OC=
2
(y1-y2),(2分)
又OC=4,
∴(y1-y22=8,即(y1+y22-4y1y2=8,(3分)
y=
m
x
可得x=
m
y
,代入y=kx+4可得:y2-4y-km=0①
∴y1+y2=4,y1•y2=-km,
∴16+4km=8,即k=-
2
m

又方程①的判别式△=16+4km=8>0,
∴所求的函数关系式为k=-
2
m
(m>0);(5分)

(2)假设存在k,m,使得以AB为直径的圆经过点P(2,0)
则AP⊥BP,过A、B分别作x轴的垂线,垂足分别为M、N
∵∠MAP与∠BPN都与∠APM互余,
∴∠MAP=∠BPN(6分)
∴Rt△MAPRt△NPB,
AM
PN
=
MP
NB

y1
x2-2
=
2-x1
y2

∴(x1-2)(x2-2)+y1y2=0,
(
m
y1
-2)(
m
y2
-2)+y1y2=0

即m2-2m(y1+y2)+4y1y2+(y1y22=0②(8分)
由(1)知:y1+y2=4,y1•y2=2,代入②得:m2-8m+12=0,
∴m=2或6,又k=-
2
m

m=2
k=-1
m=6
k=-
1
3

∴存在k,m,使得以AB为直径的圆经过点P(2,0),且
m=2
k=-1
m=6
k=-
1
3
.(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数y=
k
x
(k<0)的图象经过点A(-
3
,m),过A作AB⊥x轴于点B,△AOB的面积为
3
.?
(1)求k和m的值;?
(2)若过A点的直线y=ax+b与x轴交于C点,且∠ACO=30°,求此直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图为反比例函数的图象,则它的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,M为双曲线y=
4
x
上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知双曲线y=
k-3
x
(k为常数)与直线l相交于A、B两点,第一象限内的点M(点M在A的左侧)在双曲线y=
k-3
x
上,设直线AM、BM分别与y轴交于P、Q两点.若AM=m•MP,BM=n•MQ,则m-n的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

直线y=-2x+5分别与x轴,y轴交于点C、D,与反比例函数y=
3
x
的图象交于点A、B.过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,连接EF,下列结论:①AD=BC;②EFAB;③四边形AEFC是平行四边形;④S△AOD=S△BOC.其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图1~4所示,每个图中的“7”字形是由若干个边长相等的正方形拼接而成,“7”字形的一个顶点P落在反比例函数y=
1
x
的图象上,另“7”字形有两个顶点落在x轴上,一个顶点落在y轴上.
(1)图1中的每一个小正方形的面积是______;
(2)按照图1→图2→图→图4→…这样的规律拼接下去,第n个图形中每一个小正方形的面积是______.(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,反比例函数y=
k
x
(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知双曲线y=
k
x
(k>0)
经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,DE⊥x轴于点E.若△OBC的面积为6,则k=______.

查看答案和解析>>

同步练习册答案