精英家教网 > 初中数学 > 题目详情
如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.

(1)求出二次函数的解析式;
(2)当点P在直线OA的上方时,用含m的代数式表示线段PC的长,并求线段PC的最大值;
(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,请直接写出所有P的坐标;如果不存在,请说明理由.
(1)设y=ax(x﹣4),把A点坐标(3,3)代入得:a=﹣1,
函数的解析式为y=﹣x2+4x, …………………………………………………4分
(2)0<m<3,PC=PD﹣CD=﹣m2+3m,=﹣+,……………… 6分
∵﹣1<0,开口向下,∴有最大值,
当D(,0)时,PCmax=,…………………………………………………8分
(3)P的坐标是(3﹣,1+2)或(3+,1﹣2)或(5,﹣5)或(4,0).
………………………………………………………………………12分
(3)简单解答过程如下:
当0<m<3时,仅有OC=PC,∴,解得

当m≥3时,PC=CD﹣PD=m2﹣3m,OC=
由勾股定理得:OP2=OD2+DP2=m2+m2(m﹣4)2
①当OC=PC时,
解得:

②当OC=OP时,
解得:m1=5,m2=3(舍去),
∴P(5,﹣5);
③当PC=OP时,m2(m﹣3)2=m2+m2(m﹣4)2
解得:m=4,
∴P(4,0),
存在P的坐标是(3﹣,1+2)或(3+,1﹣2)或(5,﹣5)或(4,0).
(1)设y=ax(x-4),把A点坐标代入即可求出答案;
(2)根据点的坐标求出PC=-m2+3m,化成顶点式即可求出线段PC的最大值;
(3)当0<m<3时,仅有OC=PC,列出方程,求出方程的解即可;当m≥3时,PC=CD-PD=m2-3m,OC=m,分为三种情况:①当OC=PC时,m2-3m=m,求出方程的解即可得到P的坐标;同理可求:②当OC=OP时,③当PC=OP时,点P的坐标.综合上述即可得到答案.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

自变量为x的二次函数
(1),求函数值y的最大值与最小值;并分别指出所对应的自变量x的值;
(2)当a变化时,该二次函数图象是否经过定点?若是,请求出定点坐标;若不是,请说明理由;
(3)若该二次函数图象与x轴有两个不同的交点,而且两交点的横坐标均小于-1,求a的取值范围。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线向上平移3个单位,再向左平移4个单位,得到的抛物线的解析式是    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线F:的顶点为P,抛物线:与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:,抛物线F′与x轴的另一个交点为C.

⑴当a = 1,b=-2,c = 3时,求点C的坐标(直接写出答案);
⑵若a、b、c满足了
①求b:b′的值;
②探究四边形OABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=(x-1)2+2的最小值是(   )
A.-2   B.2   C.-1   D.1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=-x2+4x+5,完成下列各题:
(1)将函数关系式用配方法化为的形式,并写出它的顶点坐标、对称轴.
(2)求出它的图象与坐标轴的交点坐标.
(3)在直角坐标系中,画出它的图象.

(4)根据图象说明:当x为何值时,y>0;当x为何值时,y<0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0  ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为【   】
A.1B.2 C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:抛物线的顶点在x轴上,则 b的值一定是(    )
A  1          B  2          C  -2         D  2或-2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知抛物线轴的一个交点为,则代数式的值为()
A.2010B.2012 C.2013D.2014

查看答案和解析>>

同步练习册答案