精英家教网 > 初中数学 > 题目详情
精英家教网如图,在△ABC中,已知∠B和∠C的平分线相交于点F.
(1)若∠A=60°,试求∠BFC的度数;
(2)过点F作DE∥BC交AB于D,交AC于E,若BD+CE=9,求线段DE的长.
分析:(1)由三角形内角和定理可知∠ABC+∠ACB=180°-∠A,由角平分线的性质可知及三角形内角和定理可求出∠BFC的度数;
(2)由DE∥BC,BF平分∠ABC,可知DB=DF,CE=EF.便可得出结论.
解答:精英家教网解:(1)∵在△ABC中,∠A+∠B+∠ACB=180°,
∵∠A=60°,
∴∠ABC+∠ACB=120°,
∵∠1=
1
2
∠ABC,
∠2=
1
2
∠ACB,
∴∠1+∠2=
1
2
(∠ABC+∠ACB)
=
1
2
×
120°=60°,
∴∠BFC=180°-(∠1+∠2)=180°-60°=120°;

(2)过点F作DE∥BC交AB于D,交AC于E.
∵DE∥BC,
∴∠1=∠4,
∵BF平分∠ABC,
∴∠1=∠3,
∴DB=DF,
同理CE=EF,
∴DF+EF=DB+CE=9,
即DE=9.
点评:本题考查了等腰三角形的性质及三角形的内角和定理和平行线的性质;用到的知识点为:三角形内角和为180°;出现角平分线,出现平行线时一般会出现等腰三角形是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案