解:过点D作DE⊥AC于点E,则∠AED=∠DEC=90°.
∵AC⊥AB,
∴∠BAC=90°.
∵∠B=60°,
∴∠ACB=30°.
∵AD∥BC,
∴∠DAC=∠ACB=30°.
∴在Rt△ADE中,DE=
AD=3,AE=
,∠ADE=60°.
∵∠ADC=105°,
∴∠EDC=45°.
∴在Rt△CDE中,CE=DE=3.
∴AC=AE+CE=
.
∴在Rt△ABC中,tan∠B=
,
∴AB=AC÷
=3+
.
分析:由于∠B=60°,AC⊥AB可以得到∠BCA=90°-60°=30°,又由AD∥BC可以推出∠DAC=∠BCA,然后即可得到∠DCE的度数.再根据直角三角形的性质求出AC,最后利用三角函数求出AB长.
点评:本题考查的是解直角三角形,题目中告诉的是一条直角边和斜边,用勾股定理可以求出另一条直角边.得到是一等腰直角三角形,然后确定两个直角的度数.