精英家教网 > 初中数学 > 题目详情
6、已知:如图,⊙O1与⊙O2相交,⊙O1的弦AB交⊙O2于点C、D,O1O2⊥AB,垂足为F,过B作⊙O2的切线BE,切点为E,连接EC、DE,若BE=DE,∠BED=30°,AC、CE的长是方程x2-10x+16=0的两个根(AC<CE).
(1)求证:BC=EC;
(2)求⊙O2的半径.
分析:(1)根据线切角等于它所夹弧所对的圆周角,得到∠BCE=∠BED,再根据BE=DE,∠BED=30°,得到∠CEB=75°,∠BEC=75°,即可得BC=EC;
(2)先由AC、CE的长是方程x2-10x+16=0的两个根(AC<CE),求出AC、CE的长,再由O1O2⊥AB,根据垂径定理的到AF=BF,CE=DE,从而可得BD=AC,根据切割线定理求出DE的长,由于BE是圆的切线且∠BED=30°,判断出△DEO2为正三角形,进而求出⊙O2的半径.
解答:解:如图:
(1)∵∠BED=30°,BE=DE,
∴∠BDE=∠EBD=75°.
∵BE是⊙O2的切线,
∴∠BCE=∠BED=30°.
∴在△BCE中
∠CEB=180°-30°-75°=75°,
∴∠CEB=∠BEC.
∴BC=EC.(3分)

(2)∵AC、CE的长是方程x2-10x+16=0的两个根且AC<CE,
∴x1=2=AC,x2=8=CE,(4分)
∵O1O2⊥AB于F,AB是⊙O1的弦,
∴AF=BF;
∵CD是⊙O2的弦,
∴CF=DF,
∴BD=AC=2;                                                            (5分)
∵BC=CE,
∴BC=CE=8,
∵BE是⊙O2的切线,
∴BE2=BD•BC=8×2=16,
∴BE=4,DE=4;                                                               (6分)
连接O2E、O2D,则BE⊥O2E,
∵∠BED=30°,
∴∠DEO2=60°,
∵O2D=O2E,
∴△DEO2为正三角形,
∴O2E=DE=4.                                                                 (8分)
点评:此题将两圆相交的条件以及和两圆相关的线段和角巧妙的结合起来,使之成为一个有机的整体,要充分利用它们之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知;如图,⊙O1与⊙O2内切于点A,⊙O2的直径AC交⊙O1于点B,⊙O2的弦FC切⊙精英家教网O1于点D,AD的延长线交⊙O2于点E,连接AF、EF、BD.
(1)求证:AC•AF=AD•AE;
(2)若O1O2=9,cos∠BAD=
23
,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=
2
,则
R
r
的值为(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•南京)已知,如图,⊙O1与⊙O2相交,点P是其中一个交点,点A在⊙O2上,AP的延长线交⊙O1于点B,AO2的延长线交⊙O1于点C、D,交⊙O2于点E,连接PC、PE、PD,且
PC
PD
=
CE
DE
,过A作⊙O1的切线AQ,切点为Q.求证:
(1)∠CPE=∠DPE;
(2)AQ2-AP2=PC•PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1与⊙O2相交于A、B,若两圆半径分别为12和5,O1O2=13,则AB=
120
13
120
13

查看答案和解析>>

同步练习册答案