精英家教网 > 初中数学 > 题目详情
已知二次函数中,其函数与自变量之间的部分对应值如下表所示:
x
……
0
1
2
3
4
5
……
y
……
4
1
0
1
4
9
……
(1)当x=-1时,y的值为      
(2)点A()、B()在该函数的图象上,则当时,的大小关系是      
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:      
(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?=】
(1)9 (2)2)  (3) (4)当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长

试题分析:(1)从表中选3组数据,分别为0、4;1、1;2、0;二次函数
与自变量之间,则,解得,所以二次函数的解析式为
当x=-1时,y的值==9  
(2)点A()、B()在该函数的图象上,因为二次函数的对称轴为,所以则当 
(3)若将二次函数图象沿x轴向右平移3个单位,整理得  
(4)当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长.
理由:
由上可知二次函数的解析式为

∵m<-3,
>0, 
<0,<-4<0,

>0,        ∴ 
∴当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长.
点评:本题考查二次函数,解答本题的关键是掌握二次函数的性质,对称轴,会用待定系数法求二次函数的解析式,待定系数法是初中数学求函数解析式最常用的方法
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l(cm)与时间t(s)满足关系:(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.

(1)甲运动4s后的路程是多少?
(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?
(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知反比例函数y=的图象与二次函数y=ax2+x-1的图象相交于点(2,2)
(1)求a和k的值;
(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线交x轴的正半轴于点A,交y轴于点B,且OA=OB.

(1)求该抛物线的解析式;
(2)若点M为AB的中点,∠PMQ在AB的同侧以 点M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D. 设AD=m(m>0),BC=n,求n与m之间的函数关系式;
(3)在(2)的条件下,当∠PMQ的一边恰好经过该抛物线与x轴的另一个交点时,求∠PMQ的另一边所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知抛物线y=ax2+bx+c(a≠0)经过原点和点(-2,0),则2a-3b   0.(>、<或=)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线轴交于两点,与轴交于点,连结是线段上一动点,以为一边向右侧作正方形,连结.若

(1)求抛物线的解析式;
(2)求证:
(3)求的度数;
(4)当点沿轴正方向移动到点时,点也随着运动,则点所走过的路线长是        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数(a≠0)的图象如图所示,则下列结论中正确的是
A.ac>0 
B.当x>1时,y随x的增大而减小
C.b﹣2a=0
D.x=3是关于x的方程(a≠0)的一个根

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=-x2+bx+c的图象与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)求b,c的值;
(2)将二次函数y=-x2+bx+c的图象先向下平移2个单位,再向左平移1个单位,直接写出经过两次平移后的二次函数的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

新定义:若x0=ax02+bx0+c成立,则称点(x0,x0)为抛物线y=ax2+bx+c (a≠0)上的不动点.设抛物线C的解析式为:y=ax2+(b+1)x+(b -1)(a≠0).
(1)抛物线C过点(0,-3);如果把抛物线C向左平移个单位后其顶点恰好在y轴上,求抛物线C的解析式及其上的不动点;
(2)对于任意实数b,实数a应在什么范围内,才能使抛物线C上总有两个不同的不动点?                                           
(3)设a为整数,且满足a+b+1=0,若抛物线C与x轴两交点的横坐标分别为x1, x2,是否存在整数k,使得成立?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案