精英家教网 > 初中数学 > 题目详情
新定义:若x0=ax02+bx0+c成立,则称点(x0,x0)为抛物线y=ax2+bx+c (a≠0)上的不动点.设抛物线C的解析式为:y=ax2+(b+1)x+(b -1)(a≠0).
(1)抛物线C过点(0,-3);如果把抛物线C向左平移个单位后其顶点恰好在y轴上,求抛物线C的解析式及其上的不动点;
(2)对于任意实数b,实数a应在什么范围内,才能使抛物线C上总有两个不同的不动点?                                           
(3)设a为整数,且满足a+b+1=0,若抛物线C与x轴两交点的横坐标分别为x1, x2,是否存在整数k,使得成立?若存在,求出k的值;若不存在,请说明理由.
(1)y=x2-x-3,(-1,-1)和(3,3);(2)0<a<1;(3)-1或-2.

试题分析:(1)根据抛物线C过点(0,-3),把抛物线C向左平移个单位后其顶点恰好在y轴上,即可得到关于a、b的方程组,从而求得结果;
(2)由抛物线C有两个不同点可得△>0,即b2-4a(b-1)>0,b2-4ab+4a>0,再结合b为任意实数,且使得上式成立,可得(-4a)2-4×1×4a<0,整理得a2-a<0,即可求得结果;
(3)由a+b+1=0得b=-a-1,代入抛物线C得y=ax2-ax-(a+2),根据x1与x2是抛物线C与x轴的交点横坐标可得△=a2+4a(a+2)>0,即可求得字母a的范围,再结合根与系数的关系求解即可.
(1)由题意得,解之得 
∴抛物线为y=x2-x-3
令x=x2-x-3,解之得x1=-1,x2=3  
∴不动点为(-1,-1)和(3,3);
(2)∵抛物线C有两个不同的不动点,
∴x=ax2+(b+1)x+(b-1),整理得ax2+bx+(b-1)=0
∵抛物线C有两个不同点, 
∴△>0,即b2-4a(b-1)>0,b2-4ab+4a>0
∵b为任意实数,且使得上式成立,
∴(-4a)2-4×1×4a<0,整理得a2-a<0,
从而得,解之得0<a<1   
∴实数a应在0<a<1;
(3)由a+b+1=0得b=-a-1,代入抛物线C得y=ax2-ax-(a+2)
∵x1与x2是抛物线C与x轴的交点横坐标  
∴△=a2+4a(a+2)>0,解得a>0或a<
由根与系数的关系,得,x1+x2="1," x1·x2= ,
∴k=3+=3+=( a>0或a<,且a为整数)
要使k为整数,取a= -4、-3、-1、0,其中a= -1、0不合题意,舍去;
∴存在, .
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数中,其函数与自变量之间的部分对应值如下表所示:
x
……
0
1
2
3
4
5
……
y
……
4
1
0
1
4
9
……
(1)当x=-1时,y的值为      
(2)点A()、B()在该函数的图象上,则当时,的大小关系是      
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:      
(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?=】

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为(-1,0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.

(1)填空:点C的坐标是     ,b=   ,c=    
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴的两个交点A、B,与y轴交于点C,A点坐标为(4,0),C点坐标(0,-4).

(1)求抛物线的解析式;
(2)用直尺和圆规作出△ABC的外接圆⊙M,(不写作法,保留作图痕迹),并求⊙M的圆心M的坐标;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与直线AB交于点A(-1,0),B(4,).点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.

(1)求抛物线的解析式;
(2)设点D的横坐标为m,则用m的代数式表示线段DC的长;
(3)在(2)的条件下,若△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标;
(4)当点D为抛物线的顶点时,若点P是抛物线上的动点,点Q是直线AB上的动点,判断有几个位置能使以点P,Q,C,D为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

黄冈市某高新企业制定工龄工资标准时充分考虑员工对企业发展的贡献,同时提高员工的积极性、控制员工的流动率,对具有中职以上学历员工制定如下的工龄工资方案。
Ⅰ.工龄工资分为社会工龄工资和企业工龄工资;
Ⅱ.社会工龄=参加本企业工作时年龄-18,
企业工龄=现年年龄-参加本企业工作时年龄。
Ⅲ.当年工作时间计入当年工龄
Ⅳ.社会工龄工资y1(元/月)与社会工龄x(年)之间的函数关系式如①图所示,企业工龄工资y2(元/月)与企业工龄x(年)之间的函数关系如图②所示.
请解决以下问题

(1)求出y1、y2与工龄x之间的函数关系式;
(2)现年28岁的高级技工小张从18岁起一直在深圳实行同样工龄工资制度的外地某企业工作,为了方便照顾老人与小孩,今年小张回乡应聘到该企业,试计算第一年工龄工资每月下降多少元?
(3)已经在该企业工作超过3年的李工程师今年48岁,试求出他的工资最高每月多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数图象y=ax2+(a-3)x+1与x轴只有一个交点则a的值为     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图像大致为  【 】

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的部分图象如图所示,由图象可知该二次函数的图象的对称轴是直线x       

查看答案和解析>>

同步练习册答案