【题目】如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B不重合.
(1)如图①,当点P在线段AB上时,若∠PCA=20°,∠PDB=30°,求∠CPD的度数;
(2)点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系(直接写出答案);
(3)如图②,当点P在线段AB的延长线上运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系,并说明理由。
【答案】(1)50°(2)∠CPD=∠PCA+∠PDB(3)∠CPD=∠PCA-∠PDB
【解析】
(1)如图①,过P点作PE∥AC交CD于E点,由于AC∥BD,则PE∥BD,根据平行线的性质得∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,所以∠CPD=50°;
(2)证明方法与(1)一样;
(3)如图②,过P点作PF∥BD交CD于F点,由于AC∥BD,则PF∥AC,根据平行线的性质得∠CPF=∠PCA,∠DPF=∠PDB,所以∠CPD=∠PCA-∠PDB.
(1)如图①,过P点作PE∥AC交CD于E点,
∵AC∥BD
∴PE∥BD,
∴∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,
∴∠CPD=∠CPE+∠DPE=50°;
(2)∠CPD=∠PCA+∠PDB(证明方法与(1)一样);
(3)∠CPD=∠PCA-∠PDB.理由如下:
如图②,过P点作PF∥BD交CD于F点,
∵AC∥BD,
∴PF∥AC,
∴∠CPF=∠PCA,∠DPF=∠PDB,
∴∠CPD=∠CPF-∠DPF=∠PCA-∠PDB;
科目:初中数学 来源: 题型:
【题目】如图,是甲、乙两种机器人根据电脑程序工作时各自工作量y关于工作时间t的函数图象,线段OA表示甲机器人的工作量y1(吨)关于时间x(时)的函数图象,线段BC表示乙机器人的工作量y2(吨)关于时间a(时)的函数图象,根据图象信息回答下列填空题.
(1) 甲种机器人比乙种机器人早开始工作___ 小时,甲种机器人每小时的工作量是___吨.
(2)直线BC的表达式为 ,当乙种机器人工作5小时后,它完成的工作量是 吨.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABO的面积为8,OA=OB,BC=12,点P的坐标是(a,6).
(1) △ABC三个顶点的坐标分别为A( , ),B( , ),C( , );
(2) 是否存在点P,使得?若存在,求出满足条件的所有点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人,1辆A型车和2辆B型车可以载学生110人.
(1)A、B型车每辆可分别载学生多少人?
(2)若计划租用A型车辆,租用B型车辆,请你设计租车方案,能一次运送所有学生,且恰好每辆车都坐满.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线l:y=mx﹣m+1(m为常数,且m≠0)与坐标轴交于A、B两点,若△AOB(O是原点)的面积恰为2,则符合要求的直线l有( )
A.1条
B.2条
C.3条
D.4条
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1 , y2 , 0的大小关系是( )
A.0<y1<y2
B.y1<0<y2
C.y1<y2<0
D.y2<0<y1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点D、E分别是∠B的两边BC、BA上的点,∠DEB=2∠B,F为BA上一点.
(1)如图①,若DF平分∠BDE,求证:BD=DE+EF;
(2)如图②,若DF为△DBE的外角平分线,BD、DE、EF三者有怎样的数量关系?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)请直接写出点A关于y轴对称的点的坐标为 ;
(2)将△ABC平移,使点B移动后的坐标为B′(﹣5,﹣5),画出平移后的图形△A′B′C′;
(3)将△ABC绕坐标原点O顺时针旋转90°,画出旋转后的图形△A″B″C″.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com