【题目】(14分)如图,抛物线与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,请解决下列问题.
(1)填空:点C的坐标为( , ),点D的坐标为( , );
(2)设点P的坐标为(a,0),当最大时,求a的值并在图中标出点P的位置;
(3)在(2)的条件下,将△BCP沿x轴的正方向平移得到△B′C′P′,设点C对应点C′的横坐标为t(其中0<t<6),在运动过程中△B′C′P′与△BCD重叠部分的面积为S,求S与t之间的关系式,并直接写出当t为何值时S最大,最大值为多少?
【答案】(1)C(0,3),D(1,4);(2)a=﹣3;(3)S=,当t=时,S有最大值.
【解析】试题分析:(1)令x=0,得到C的坐标,把抛物线配成顶点式,可得顶点D的坐标;
(2)延长CD交x轴于点P.因为小于或等于第三边CD,所以当等于CD时, 的值最大.因此求出过CD两点的解析式,求它与x轴交点坐标即可;
(3)过C点作CE∥x轴,交DB于点E,求出直线BD的解析式,得到点E的坐标,求出P′C′与BC的交点M的坐标,分两种情况讨论:①点C′在线段CE上;②点C′在线段CE的延长线上,再分别求得N点坐标,再利用图形的面积的差,可表示出S,再求得其最大值即可.
试题解析:(1)在中,令x=0,得到y=3,∴C(0,3),∵=,∴D(1,4),故答案为:C(0,3),D(1,4);
(2)∵在三角形中两边之差小于第三边,∴延长DC交x轴于点P,设直线DC的解析式为,把D、C两点坐标代入可得: ,解得: ,∴直线DC的解析式为,将点P的坐标(a,0)代入得a+3=0,求得a=﹣3,如图1,点P(﹣3,0)即为所求;
(3)过点C作CE∥x,交直线BD于点E,如图2,
由(2)得直线DC的解析式为,易求得直线BD的解析式为,直线BC的解析式为,在中,当y=3时,x=,∴E点坐标为(,3),设直线P′C′与直线BC交于点M,∵P′C′∥DC,P′C′与y轴交于点(0,3﹣t),∴直线P′C′的解析式为,联立: ,解得: ,∴点M坐标为(, ),∵B′C′∥BC,B′坐标为(3+t,0),∴直线B′C′的解析式为,
分两种情况讨论:①当时,如图2,B′C′与BD交于点N,联立:,解得: ,∴N点坐标为(3﹣t,2t),S=S△B′C′P﹣S△BMP﹣S△BNB′=×6×3﹣(6﹣t)×(6﹣t)﹣t×2t=,其对称轴为t=,可知当时,S随t的增大而增大,当t=时,有最大值;
②当时,如图3,直线P′C′与DB交于点N,
联立: ,解得: ,∴N点坐标为(, ),S=S△BNP′﹣S△BMP′=(6﹣t)×﹣×(6﹣t)×==;
显然当<t<6时,S随t的增大而减小,当t=时,S=
综上所述,S与t之间的关系式为S=,且当t=时,S有最大值,最大值为.
∵,∴当t=时,S有最大值.
科目:初中数学 来源: 题型:
【题目】芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米, ≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题的逆命题成立的是( ).
A.全等三角形的对应角相等
B.若三角形的三边满足,则该三角形是直角三角形
C.对顶角相等
D.同位角互补,两直线平行
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y1=(x﹣2)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴l与x轴交于点C,它的顶点为点D.
(1)写出点D的坐标 .
(2)点P在对称轴l上,位于点C上方,且CP=2CD,以P为顶点的二次函数y2=ax2+bx+c(a≠0)的图象过点A.
①试说明二次函数y2=ax2+bx+c(a≠0)的图象过点B;
②点R在二次函数y1=(x﹣2)(x﹣4)的图象上,到x轴的距离为d,当点R的坐标为 时,二次函数y2=ax2+bx+c(a≠0)的图象上有且只有三个点到x轴的距离等于2d;
③如图2,已知0<m<2,过点M(0,m)作x轴的平行线,分别交二次函数y1=(x﹣2)(x﹣4)y2=ax2+bx+c(a≠0)的图象于点E、F、G、H(点E、G在对称轴l左侧),过点H作x轴的垂线,垂足为点N,交二次函数y1=(x﹣2)(x﹣4)的图象于点Q,若△GHN∽△EHQ,求实数m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.(1)周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,求张明和李强的速度分别是多少米/分?
(1)两人到达绿道后约定先跑 6 千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.
①当m=12,n=5时,求李强跑了多少分钟?
②张明的跑步速度为 米/分(直接用含m,n的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】机动车出发前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升.油箱中余油量(升)与行驶时间(小时)之间的关系如图所示,根据下图回答问题:
(1)机动车行驶几小时后加油?加了多少油?
(2)试求加油前油箱余油量与行驶时间之间的关系式;
(3)如果加油站离目的地还有350千米,车速为60千米/小时,照这样行驶,要到达目的地,油箱中的油是否够用?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为( )
A. (,) B. (,) C. (,) D. (,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在平行四边形ABCD中,BF平分交AD于点F,AEBF于点O,交BC于点E,连接EF.
(1)求证:四边形ABEF是菱形;
(2)若AE=6,BF=8,CE=3,求四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com