【题目】如图:在平面直角坐标系xOy中,已知正比例函数y=与一次函数y=﹣x+7的图象交于点A.
(1)求点A的坐标;
(2)在y轴上确定点M,使得△AOM是等腰三角形,请直接写出点M的坐标;
(3)如图、设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=和y=﹣x+7的图象于点B、C,连接OC,若BC=OA,求△ABC的面积及点B、点C的坐标;
(4)在(3)的条件下,设直线y=﹣x+7交x轴于点D,在直线BC上确定点E,使得△ADE的周长最小,请直接写出点E的坐标.
【答案】(1)(3,4);(2)点M为(0,5)、(0,﹣5)、(0,8)、(0,);(3)点B(9,12)、C(9,﹣2);(4)点E坐标为(9,1).
【解析】
试题分析:(1)联立正比例函数与一次函数解析式组成方程组,求出方程组的解得到x与y的值,确定出A坐标即可;
(2)利用勾股定理求出OA的长,根据M在y轴上,且△AOM是等腰三角形,如图1所示,分情况讨论,求出M坐标即可;
(3)设出B与C坐标,表示出BC,由已知BC与OA关系,及OA的长求出BC的长,求出a的值,如图2所示,过A作AQ垂直于BC,求出三角形ABC面积;由a的值确定出B与C坐标即可;
(4)如图3所示,作出D关于直线BC的对应点D′,连接AD′,与直线BC交于点E,此时△ADE周长最小,求出此时E坐标即可.
解:(1)联立得:,
解得:,
则点A的坐标为(3,4);
(2)根据勾股定理得:OA==5,
如图1所示,分四种情况考虑:
当OM1=OA=5时,M1(0,5);
当OM2=OA=5时,M2(0,﹣5);
当AM3=OA=5时,M3(0,8);
当OM4=AM4时,M4(0,),
综上,点M为(0,5)、(0,﹣5)、(0,8)、(0,);
(3)设点B(a,a),C(a,﹣a+7),
∵BC=OA=×5=14,
∴a﹣(﹣a+7)=14,
解得:a=9,
过点A作AQ⊥BC,如图2所示,
∴S△ABC=BCAQ=×14×(9﹣3)=42,
当a=9时,a=×9=12,﹣a+7=﹣9+7=﹣2,
∴点B(9,12)、C(9,﹣2);
(4)如图3所示,作出D关于直线BC的对称点D′,连接AD′,与直线BC交于点E,连接DE,此时△ADE周长最小,
对于直线y=﹣x+7,令y=0,得到x=7,即D(7,0),
由(3)得到直线BC为直线x=9,
∴D′(11,0),
设直线AD′解析式为y=kx+b,
把A与D′坐标代入得:,
解得:,
∴直线AD′解析式为y=﹣x+,
令x=9,得到y=1,
则此时点E坐标为(9,1).
科目:初中数学 来源: 题型:
【题目】根据下面给出的数轴,解答下面的问题:
(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.
(2)请问A,B两点之间的距离是多少?
(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:
①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,
其中结论正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com