精英家教网 > 初中数学 > 题目详情

梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=1,O为AC中点,OE⊥OD交AB于E,EF⊥CD于F,交AC于M,BO延长线交DC于G,则下列结论:①EO=DO;②OM=OG;③BC=2AD;④四边形AEOD的面积为数学公式.其中正确的结论是


  1. A.
    ①②③④
  2. B.
    ①②③
  3. C.
    ①②④
  4. D.
    ①③④
C
分析:根据题意画出适当的图形,结合全等三角形的判定和性质,不难解出.
解答:解:∵△ABC中AB=BC,O为AC中点,且∠ABC=90°,
∴△ABC为等腰直角三角形,BO为△ABC斜边上的中垂线,BO=AO=OC,
且∠BAC=∠ACB=∠ABG=∠GBC=45°,
∵AD∥BC,
∴∠DAC=∠ACB=45°,
∴∠DAC=∠ABG.
四边形ADOE中,DA⊥AB,OD⊥OE,那么∠ADO=180°-∠AEO=∠BEO,
又由BO=AO,那么根据BO=AO,∠ADO=∠BEO,∠DAC=∠ABG,
可得出△BEO≌△ADO,因此EO=DO,∠AOD=∠BOE;
∵BO⊥OC(BO为△ABC斜边上的中垂线),那么∠DOG=90°-∠AOD=90°-∠BOE=∠EOM,
如果设OD与EF交于N,
在直角△DFN和直角△BON中,
∵OD⊥OE,EF⊥CD,
∴∠MEO=90°-∠ENO=90°-∠DNF=∠NDF,
因此由∠MEO=∠NDF,∠DOG=∠EOM,EO=OD可得出△EMO≌△DGO,
∴OM=OG,
∵△ADO≌△BEO,
∴S△ADO=S△BEO
所以S?ADOE=S△ADO+S△AEO=S△AOB=S△ABC=
因此本题中①②④是正确的.
故选C.
点评:本题本题考查了全等三角形的判定及全等三角形性质的应用,要记牢全等三角形的判定条件,要把对应的角和边找好.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.
(1)求证:△MDC是等边三角形;
(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE分别交BD、BC于点G、E,连接精英家教网DE.
(1)求证:四边形ABED是菱形;
(2)若ED⊥DC,∠ABC=60°,AB=2,求梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB=CD,点E在BC的延长线上,且∠BDE=∠ADC.求证:AB•BD=DE•AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰梯形ABCD中,AD∥BC,AB=5,AD=6,BC=12,点E在AD边上,且AE:ED=1:2,点P是AB边上的一个动点,(P不与A,B重合)过点P作PQ∥CE交BC于点Q,设AP=x,CQ=y,则y与x之间的函数关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠ACB=45°,翻折梯形ABCD,使点C重合于点A,折痕精英家教网分别交边CD、BC于点F、E,若AD=3,BC=12,
求:(1)CE的长;
(2)∠BAE的正切值.

查看答案和解析>>

同步练习册答案