精英家教网 > 初中数学 > 题目详情

已知:如图,E、F为BC上的点,BF=CE,点A、D分别在BC的两侧,且AE∥DF,AE=DF.
求证:AB∥CD.

证明:∵AE∥DF,
∴∠AEB=∠DFC.
∵BF=CE,
∴BF+EF=CE+EF.
即BE=CF.
∵在△ABE和△DCF中,

∴△ABE≌△DCF(SAS).
∴∠B=∠C.
∴AB∥CD.
分析:首先由AE∥DF得到∠AEB=∠DFC,再由线段之间的等量关系得到BE=CF,结合AE=DF,证明△ABE≌△DCF(SAS),由两三角形全等得到∠B=∠C,继而证明出AB∥CD.
点评:本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是性质和定理是解答此题的关键,此题难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,⊙O的直径为10,弦AC=8,点B在圆周上运动(与A、C两点不重合),连接BC、BA,过点C作CD⊥AB于D、设CB的长为x,CD的长为y.
(1)求y关于x的函数关系式;当以BC为直径的圆与AC相切时,求y的值;
(2)在点B运动的过程中,以CD为直径的圆与⊙O有几种位置关系,并求出不同位置时y的取值范围;
(3)在点B运动的过程中,如果过B作BE⊥AC于E,那么以BE为直径的圆与⊙O能内切吗?若不能,说明理由;若能,求出BE的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•普陀区二模)已知:如图,⊙O的半径为5,弦AB的长等于8,OD⊥AB,垂足为点D,DO的延长线与⊙O相交于点C,点E在弦AB的延长线上,CE与⊙O相交于点F,cosC=
45

求:(1)CD的长;
(2)EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,E为正方形ABCD外一点,AE=AD,∠ADE=75°,则∠AEB=
30°
30°

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图△ABC是边长为4的等边三角形,点P、Q分别从A、C两点同时出发,速度为每秒1个单位长度,B与原点重合,PQ交AC于D.
(1)写出点A的坐标
(2,2
3
(2,2
3

(2)当△DCQ为等腰三角形时,求t的值;
(3)若△PCQ的面积为S,P、Q运动的时间为t秒,求S与t的函数关系式,并求S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,A、B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是m;若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,你知道D点对应的数是n,则m+n=
-232
-232

查看答案和解析>>

同步练习册答案