精英家教网 > 初中数学 > 题目详情
已知:如图,⊙O的直径为10,弦AC=8,点B在圆周上运动(与A、C两点不重合),连接BC、BA,过点C作CD⊥AB于D、设CB的长为x,CD的长为y.
(1)求y关于x的函数关系式;当以BC为直径的圆与AC相切时,求y的值;
(2)在点B运动的过程中,以CD为直径的圆与⊙O有几种位置关系,并求出不同位置时y的取值范围;
(3)在点B运动的过程中,如果过B作BE⊥AC于E,那么以BE为直径的圆与⊙O能内切吗?若不能,说明理由;若能,求出BE的长.
精英家教网
分析:(1)∵直径为10,弦AC=8,CD⊥AB,CB的长为x,CD的长为y,∴y=
4
5
x,当以CB为直径的圆与AC相切时,点B与点M重合,即可求解;
(2)①当CB=CA=8时,两圆内切,②当CB≠8时,两圆相交;讨论后即可得出答案;
(3)假设以BE为直径的圆与⊙O可以内切,看能否求出BE即可;
解答:精英家教网解:(1)如图1,连接OA、OC、.过圆心O作OE⊥AC于点E.
∵直径为10,弦AC=8,
∴OC=5,CE=8,∠AOE=∠COE.
又∵∠ABC=
1
2
∠AOC=∠COE,CD⊥AB,CB的长为x,
CD的长为y,
∴y=
4
5
x,当以CB为直径的圆与AC相切时,点B与点M重合,
此时,x=6,y=4.8;

(2)以DC为直径的圆与⊙O的位置关系是相交或内切,
①当CB=CA=8时,两圆内切,y=
4
5
×8=6.4;
②当CB≠8时,两圆相交,0<y≤8,且y≠6.4.

(3)以BE为直径的圆与⊙O可以内切,
∵BE⊥AC,CD⊥AB,
∴BE=5-3=2或BE=5+3=8.
点评:本题考查了一次函数与圆与圆的位置关系,难度较大,关键是分类讨论两圆的位置关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,从地面上的点P测得大楼的某扇窗户A的仰角为37°,再从点P测得该大楼窗户A正上方的另一扇精英家教网窗户B,这时PA平分∠BPC.若点P到大楼的水平距离PC为10米.
(1)求∠BPC的度数;
(2)试求窗户B到地面的竖直高度BC(精确到0.1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通一模)已知:如图,直y=2x+b交x轴于点B,交y轴于点C,点A为x轴正半轴上一点,AO=CO,△ABC的面积为12.
(1)求b的值;
(2)若点P是线段AB中垂线上的点,是否存在这样的点P,使△PBC成为直角三角形?若存在,试直接写出所有符合条件的点P的坐标;若不存在,试说明理由;
(3)点Q为线段AB上一个动点(点Q与点A、B不重合),QE∥AC,交BC于点E,以QE为边,在点B的异侧作正方形QEFG.设AQ=m,△ABC与正方形QEFG的重叠部分的面积为S,试求S与m之间的函数关系式,并写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2y=
13
x
相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,直y=2x+b交x轴于点B,交y轴于点C,点A为x轴正半轴上一点,AO=CO,△ABC的面积为12.
(1)求b的值;
(2)若点P是线段AB中垂线上的点,是否存在这样的点P,使△PBC成为直角三角形?若存在,试直接写出所有符合条件的点P的坐标;若不存在,试说明理由;
(3)点Q为线段AB上一个动点(点Q与点A、B不重合),QE∥AC,交BC于点E,以QE为边,在点B的异侧作正方形QEFG.设AQ=m,△ABC与正方形QEFG的重叠部分的面积为S,试求S与m之间的函数关系式,并写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源:2013年江苏省南通市通州区中考数学一模试卷(解析版) 题型:解答题

已知:如图,直y=2x+b交x轴于点B,交y轴于点C,点A为x轴正半轴上一点,AO=CO,△ABC的面积为12.
(1)求b的值;
(2)若点P是线段AB中垂线上的点,是否存在这样的点P,使△PBC成为直角三角形?若存在,试直接写出所有符合条件的点P的坐标;若不存在,试说明理由;
(3)点Q为线段AB上一个动点(点Q与点A、B不重合),QE∥AC,交BC于点E,以QE为边,在点B的异侧作正方形QEFG.设AQ=m,△ABC与正方形QEFG的重叠部分的面积为S,试求S与m之间的函数关系式,并写出m的取值范围.

查看答案和解析>>

同步练习册答案