精英家教网 > 初中数学 > 题目详情
直线y=-2x+5分别与x轴,y轴交于点C、D,与反比例函数的图象交于点A、B.过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,连接EF,下列结论:①AD=BC;②EF∥AB;③四边形AEFC是平行四边形;④S△AOD=S△BOC.其中正确的个数是( )

A.1
B.2
C.3
D.4
【答案】分析:①先把反比例函数、一次函数解析式联合组成方程组,解可求A、B坐标,根据y=-2x+5可求C、D的坐标,而AE⊥y轴,BF⊥x轴,结合A、B、C、D的坐标,可知AE=1,DE=OD-OE=5-3=2,在Rt△ADE中利用勾股定理可求AD=,同理可求BC=,于是AD=BC,①正确;
②根据A、B、C、D的坐标,易求OF:OE=1:2,OC:OD=1:2,即OF:OE=OC:OD,斜率相等的两直线平行,那么EF∥AB,故②正确;
③由于AE=CF=1,且AE∥CF,根据一组对边相等且平行的四边形是平行四边形,可知四边形AEFC是平行四边形,故③正确;
④根据面积公式可分别求S△AOD,S△BOC,可知两个面积相等,故④正确.
解答:解:如右图所示,
①∵y=-2x+5与相交,

解得
∴A点坐标是(1,3),B点坐标是(,2),
∵直线y=-2x+5与x轴和y轴的交点分别是(,0)、(0,5),
∴C点坐标是(,0),D点坐标是(0,5),
∵AE⊥y轴,BF⊥x轴,
∴AE=1,DE=OD-OE=5-3=2,
在Rt△ADE中,AD==
同理可求BC=
故AD=BC,
故①选项正确;
②∵OF:OE=1:2,OC:OD=1:2,
∴EF∥AB,
故②选项正确;
③∵AE=CF=1,且AE∥CF,
∴四边形AEFC是平行四边形,
故③选项正确;
④∵S△AOD=•OD•AE=×5×1=2.5,
S△BOC=•OC•BF=××2=2.5,
∴S△AOD=S△BOC
故④选项正确.
故选D.
点评:本题考查了反比例函数、一次函数的性质、三角形面积公式、勾股定理、平行四边形的判定,解题的关键是熟练点与函数的关系,能根据函数解析式求出所需要的点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知直线y=2x+8与x轴和y轴的交点的坐标分别是
 
 
;与两条坐标轴围成的三角形的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

10、把直线y=2x+1分别向下平移2个单位和向右平移2个单位后的解析式分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=x2-(m+2)x+3(m-1)与x轴的两个交点M、N在原点的精英家教网两侧,点N在点M的右边,直线y1=-2x+m+6经过点N,交y轴于点F.
(1)求这条抛物线和直线的解析式.
(2)又直线y2=kx(k>0)与抛物线交于两个不同的点A、B,与直线y1交于点P,分别过点A、B、P作x轴的垂线,垂足分别是C、D、H.
①试用含有k的代数式表示
1
OC
-
1
OD

②求证:
1
OC
-
1
OD
=
2
OH

(3)在(2)的条件下,延长线段BD交直线y1于点E,当直线y2绕点O旋转时,问是否存在满足条件的k值,使△PBE为等腰三角形?若存在,求出直线y2的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

7、若直线y=kx+b与直线y=2x+2关于x轴对称,则k,b的值分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,点A、B都是直线y=-2x+m(m为常数)上的点,A、B的横坐标分别是-1,2,AC∥y轴,BC∥x轴,则三角形ABC的面积为(  )

查看答案和解析>>

同步练习册答案