精英家教网 > 初中数学 > 题目详情
(2005•无锡)如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点.连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.
(1)求证:△APE∽△ADQ;
(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值,最大值为多少?
(3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明)

【答案】分析:(1)根据PE∥QD得出的同位角相等即可证得两三角形相似.
(2)由于PE∥DQ,PF∥AQ,因此四边形PEQF是平行四边形,根据平行四边形的性质可知:S△PEF=S平行四边形PEQF,可先求出△AQD的面积,然后根据△AEP与△ADQ相似,用相似比的平方即面积比求出△APE的面积,同理可求出△DPF的面积,进而可求出平行四边形PEQF的面积表达式,也就能得出关于S,x的函数关系式,根据函数的性质即可得出S的最大值即对于的x的值.
(3)△ADQ中,AD长为定值,因此要使△ADQ的周长最小,AQ+QD需最小,可根据轴对称图形的性质和两点间线段最短为依据来确定Q点的位置.
解答:(1)证明:∵PE∥DQ
∴△APE∽△ADQ;

(2)解:同(1)可证△APE∽△ADQ与△PDF∽△ADQ,及S△PEF=S平行四边形PEQF
根据相似三角形的面积之比等于相似比得平方,
==
∵S△AQD=AD×AB=×3×2=3,
得S△PEF=S平行四边形PEQF
=(S△AQD-S△AEP-S△DFP
=×[3-×3-×3]
=(-x2+2x)
=-x2+x
=-(x-2+
∴当x=,即P是AD的中点时,S△PEF取得最大值

(3)解:作A关于直线BC的对称点A′,连DA′交BC于Q,则这个点Q就是使△ADQ周长最小的点,此时Q是BC的中点.

点评:本题主要考查了相似三角形的判定和性质、图形面积的求法、二次函数的应用等知识.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2005•无锡)如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,),线段AB的垂直平分线交x轴于点C,交AB于点D.
(1)试确定这个一次函数关系式;
(2)求过A、B、C三点的抛物线的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2005年江苏省无锡市中考数学试卷(解析版) 题型:解答题

(2005•无锡)如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,),线段AB的垂直平分线交x轴于点C,交AB于点D.
(1)试确定这个一次函数关系式;
(2)求过A、B、C三点的抛物线的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《圆》(08)(解析版) 题型:填空题

(2005•无锡)如图,AB是⊙O的直径,若AB=4cm,∠D=30°,则∠B=    度,AC=    cm.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《图形认识初步》(01)(解析版) 题型:选择题

(2005•无锡)如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2005年江苏省无锡市中考数学试卷(解析版) 题型:选择题

(2005•无锡)如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案