分析 根据在Rt△ABC中,∠A,∠B,∠C的对边分别为a,b,c.∠C=90°,c=8,sinA=$\frac{1}{4}$,可以求得a的长,根据勾股定理可以求得b的长,从而可以解答本题.
解答 解:∵在Rt△ABC中,∠A,∠B,∠C的对边分别为a,b,c.∠C=90°,c=8,sinA=$\frac{1}{4}$,sinA=$\frac{a}{c}$,
∴a=2.
∴b=$\sqrt{{c}^{2}-{a}^{2}}=\sqrt{{8}^{2}-{2}^{2}}=\sqrt{60}=2\sqrt{15}$.
故答案为:2$\sqrt{15}$.
点评 本题考查解直角三角形,解题的关键是明确锐角三角函数的含义,能根据勾股定理求某一条边的长.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com