【题目】已知抛物线y=+mx﹣2m﹣2与x轴交于A、B两点,点A在点B的左边,与y轴交于点C,
(1)当m=1时,求点A和点B的坐标;
(2)抛物线上有一点D(﹣1,n),若△ACD的面积为5,求m的值;
(3)P为抛物线上A、B之间一点(不包括A、B),PM⊥x轴于点M,求的值.
【答案】(1)A(﹣4,0),B(2,0);(2);(3)2.
【解析】
试题分析:(1)当m=1时,抛物线解析式为y=+x﹣4.然后解方程+x﹣4=0可得A、B的坐标;
(2)过点D作DE⊥AB于点E,交AC于点F,如图,解方程+mx﹣2m﹣2=0得=2,=﹣2m﹣2,则A为(﹣2m﹣2,0),B(2,0),易得C(0,﹣2m﹣2),所以OA=OC=2m+2,则∠OAC=45°.利用D(﹣1,n)得到OE=1,AE=EF=2m+1.n=﹣3m﹣,再计算出DF=m+,利用三角形面积公式得到(m+)(2m+2)=5.解方程得到=,=﹣3,最后利用m≥0得到m=;
(3)由(2)得点A(﹣2m﹣2,0),B(2,0).设点P的坐标为(p,q).则AM=p+2m+2,BM=2﹣p,AMBM=﹣2mp+4m+4,PM=﹣q.再利用点P在抛物线上得到q=+mp﹣2m﹣2,所以AMBM=2 PM,从而得到的值.
试题解析:(1)当m=1时,抛物线解析式为y=+x﹣4.
当y=0时,+x﹣4=0,解得=﹣4,=2.
∴A(﹣4,0),B(2,0);
(2)过点D作DE⊥AB于点E,交AC于点F,如图,
当y=0时,+mx﹣2m﹣2=0,则(x﹣2)(x+2m+2)=0,
解得=2,=﹣2m﹣2,
∴点A的坐标为(﹣2m﹣2,0),B(2,0),
当x=0时,y=﹣2m﹣2,则C(0,﹣2m﹣2),
∴OA=OC=2m+2,
∴∠OAC=45°.
∵D(﹣1,n),
∴OE=1,
∴AE=EF=2m+1.
当x=﹣1时,n=﹣m﹣2m﹣2=﹣3m﹣,
∴DE=3m+,
∴DF=3m+﹣(2m+1)=m+,
又∵S△ACD=DFAO.
∴(m+)(2m+2)=5.
+3m﹣9=0,解得=,=﹣3.
∵m≥0,
∴m=;
(3)点A的坐标为(﹣2m﹣2,0),点B的坐标为(2,0).
设点P的坐标为(p,q).则AM=p+2m+2,BM=2﹣p,
AMBM=(p+2m+2)( 2﹣p)=﹣2mp+4m+4,
PM=﹣q.
因为点P在抛物线上,
所以q=+mp﹣2m﹣2.
所以AMBM=2PM.
即=2.
科目:初中数学 来源: 题型:
【题目】点P,Q都是直线l外的点,下列说法正确的是( )
A.连接PQ,则PQ一定与直线l垂直
B.连接PQ,则PQ一定与直线l平行
C.连接PQ,则PQ一定与直线l相交
D.过点P只能画一条直线与直线l平行
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】记a1=﹣3,a2=(﹣3)×(﹣3),a3=(﹣3)×(﹣3)×(﹣3),…,an= .
(1)填空:a4= , a25是一个数(填“正”或“负”);
(2)计算:a5+a6;
(3)请直接写出2016an+672an+1的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数.小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”
那么,你能回答以下问题吗?
(1)他们取出的两张卡片上的数字分别是几?
(2)第一次,他们拼出的两位数是多少?
(3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂第一车间有x人,第二车间比第一车间人数的 少30人,如果从第二车间调出10人到第一车间,那么:
(1)两个车间共有多少人?
(2)调动后,第一车间的人数比第二车间多多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料,回答问题:
材料
题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率
题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?
我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.
问题:
(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?
(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案
(3)请直接写出题2的结果.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com