精英家教网 > 初中数学 > 题目详情

如图,等边△ABC中,D为AB边中点,DE⊥AC于E,EF∥AB交BC于F点,则△EFC与△ABC的面积之比为


  1. A.
    3:4
  2. B.
    9:16
  3. C.
    4:5
  4. D.
    16:25
B
分析:作AC边上的高BG,垂足为G,在等边三角形中,利用三线合一定理,结合DE∥BD,可求出AE与AC的关系,从而得出CE与AC的关系,那么再利用相似三角形的面积比等于相似比的平方,即可求.
解答:解:从B点作AC边上的高BG,交AC于G,
∵DE⊥AC于E
∴DE∥BG
又∵D为AB边中点
∴AE=GE
∵△ABC为等边三角形,且BG为高
∴AG=GC
∴4AE=AC,即CE=AC
∵EF∥AB
∴△EFC∽△ABC
又∵CE=AC
∴△EFC与△ABC的面积之比=(AC)2:AC2=9:16.
故选B.
点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比.(2)相似三角形面积的比等于相似比的平方.(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

30、如图,等边△ABC中,E,D在AB,AC上,且EB=AD,BD与EC交于点F,则∠DFC=
60
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.
(1)求证:AE=CF;
(2)G为CF延长线上一点,连接BG.若BG=5,BC=8,求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,D、E、F分别是各边上的一点,且AD=BE=CF.
求证:△DEF是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,D是BC上一点,以AD为边作等腰△ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°,求∠FDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,AD=CE,BD和AE相交于F,BG⊥AE垂足为G,求∠FBG的度数.

查看答案和解析>>

同步练习册答案