精英家教网 > 初中数学 > 题目详情
精英家教网如图,等边△ABC的边长为2,F为AB中点,延长BC至D,使CD=BC,连接FD交AC于E,则四边形BCEF的面积为
 
分析:根据梅涅劳斯定理得,
AF
FB
BD
CD
CE
EA
=1,则
CE
EA
=
1
2
,由面积公式得SBCEF=S△BCF+S△CEF,即可得出答案.
解答:解:∵DEF是△ABC的梅氏线,
∴由梅涅劳斯定理得,
AF
FB
BD
CD
CE
EA
=1,
1
1
4
2
CE
EA
=1,则
CE
EA
=
1
2

连FC,S△BCF=
1
2
S△ABC,S△CEF=
1
6
S△ABC
于是SBCEF=S△BCF+S△CEF
=
2
3
S△ABC
=
2
3
×
1
2
×2×2sin60°
=
4
3
×
3
2
=
2
3
3

故答案为
2
3
3
点评:本题是一道竞赛题,考查了梅内劳斯定理和赛瓦定理,要熟练掌握定理的内容,才能准确的解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,等边△ABC的边长为l,取边AC的中点D,在外部画出一个新的等边三角形△CDE,如此绕点C顺时针继续下去,直到所画等边三角形的一边与△ABC的BC边重叠为止,此时这个三角形的边长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,等边△ABC的三条角平分线相交于点O,OD∥AB交BC于D,OE∥AC交BC于点E,那么这个图形中的等腰三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,等边△ABC的边长为6,点D、E分别在AB、AC上,且AD=AE=2,直线l过点A,且l∥BC,若点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设F点运动的时间为t秒,当t>0时,直线DF交l于点G,GE的延长线与BC的延长线交于点H,AB与GH相交于点O.
(1)当t为何值时,AG=AE?
(2)请证明△GFH的面积为定值;
(3)当t为何值时,点F和点C是线段BH的三等分点?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等边△ABC的边长为2,AD是△ABC的角平分线,
(1)求AD的长;
(2)取AB的中点E,连接DE,写出图中所有与BD相等的线段.(不要求说理)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为(  )

查看答案和解析>>

同步练习册答案