精英家教网 > 初中数学 > 题目详情
(2002•上海)如图,直线y=x+2分别交x、y轴于点A、C,P是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,S△ABP=9.
(1)求点P的坐标;
(2)设点R与点P在同一个反比例函数的图象上,且点R在直线PB的右侧,作RT⊥x轴,T为垂足,当△BRT与△AOC相似时,求点R的坐标.

【答案】分析:(1)证明△AOC∽△ABP,利用线段比求出BP,AB的值从而可求出点P的坐标;
(2)设R点坐标为(x,y),求出反比例函数.又因为△BRT∽△AOC,利用线段比联立方程组求出x,y的值.
解答:解:(1)根据已知条件可得A点坐标为(-4,0),C点坐标为(0,2),
即AO=4,OC=2,
又∵S△ABP=9,
∴AB•BP=18,
又∵PB⊥x轴?OC∥PB,
∴△AOC∽△ABP,
==
∴2BP=AB,
∴2BP2=18,
∴BP2=9,
∵BP>0,
∴BP=3,
∴AB=6,
∴P点坐标为(2,3);

(2)设R点的坐标为(x,y),
∵P点坐标为(2,3),
∴反比例函数解析式为y=
又∵△BRT∽△AOC,
∴①时,有=
则有
解得

时,有=
则有
解得(不在第一象限,舍去),或
故R的坐标为(+1,),(3,2).
点评:本题考查的是一次函数的综合运用以及相似三角形的判定,难度中上.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2002•上海模拟)如图,在Rt△ABC中,∠C=90°,AB=10,ctgA=
4
3

(1)当∠PBC=∠A时,求AP的长.
(2)点O是BP上一点,且⊙O与边AB、AC都相切,设AP=x,⊙O的半径为y,求y与x的函数解析式,并写出函数的定义域.
(3)在(2)中,⊙O与边BC也相切时,试判断sinA与
OP
AP
的大小,并说明你的理由.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2002•上海)如图,直线y=x+2分别交x、y轴于点A、C,P是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,S△ABP=9.
(1)求点P的坐标;
(2)设点R与点P在同一个反比例函数的图象上,且点R在直线PB的右侧,作RT⊥x轴,T为垂足,当△BRT与△AOC相似时,求点R的坐标.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《锐角三角函数》(04)(解析版) 题型:解答题

(2002•上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
求S△ABD:S△BCD

查看答案和解析>>

科目:初中数学 来源:2002年上海市中考数学试卷(解析版) 题型:解答题

(2002•上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
求S△ABD:S△BCD

查看答案和解析>>

同步练习册答案