分析 (1)由等腰三角形的性质可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,即可得出结论;
(2)由等腰三角形的性质可知,BD=2BE,根据△ABE∽△DBC,利用相似比求BE即可.
解答 (1)证明:∵AB=AD=16,
∴∠ABD=∠ADB,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠DBC,
∵AE⊥BD,
∴∠AEB=∠C=90°,
∴△ABE∽△DBC;
(2)解:∵AB=AD,又AE⊥BD,
∴BE=DE,
∴BD=2BE,
由△ABE∽△DBC,
得$\frac{AB}{BD}=\frac{BE}{BC}$,
∵AB=AD=16,BC=18,
∴$\frac{16}{2BE}=\frac{BE}{18}$,
解得:BE=12.
点评 本题考查了相似三角形的判定与性质、等腰三角形的性质;证明三角形相似是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | -(2a-b+c)=-2a-b+c | B. | -(x-y)+(xy-1)=-x+y+xy-1 | ||
| C. | -(3b-2c)=-3b-2c | D. | -[x-(5z+4)]=-x-5z+4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com