精英家教网 > 初中数学 > 题目详情

如图,△ABC是等腰三角形,∠B=∠C,AD是底边BC上的高,DE∥AB交AC于点E.试找出图中除△ABC外的等腰三角形,并说明你的理由.

解:△AEC和△DCE都是等腰三角形.理由如下
∵△ABC是等腰三角形,∠B=∠C,AD是底边BC上的高,
∴AD平分∠BAC,
∴∠BAD=∠CAD,
又∵DE∥AB,
∴∠B=∠EDC,∠BAD=∠ADE,
∴∠EDC=∠C,∠ADE=∠CAD,
∴△AED和△DCE都是等腰三角形.
分析:先根据等腰三角形的性质得到AD平分∠BAC,即∠BAD=∠CAD,再根据平行线的性质得到∠B=∠EDC,∠BAD=∠ADE,则有∠EDC=∠C,∠ADE=∠CAD,最后根据等腰三角形的判定得到△AEC和△DCE都是等腰三角形.
点评:本题考查了等腰三角形的判定与性质:有两个角相等的三角形为等腰三角形;等腰三角形底边上的高平分顶角.也考查了平行线的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等腰直角三角形,BC是斜边,点P是△ABC内一定点,延长BP至P′,将△ABP绕点A旋转后,与△ACP′重合,如果AP=
2
,那么PP′=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,△ABC是等腰三角形,AB=AC,D为直线BC上一点,DE⊥AC,DF⊥AB,CH⊥AB,
(1)如图(1)若D为BC的中点,求证:DE+DF=CH.
(2)如图(2)若D为BC延长线上一点,其他条件不变,线段DE.DF.CH 之间有何数量关系,请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是
 
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等腰直角三角形,D为斜边AB上任意一点(不与A,B重合),连接CD,作EC⊥DC,且EC=DC,连接AE.
(1)求证:∠E+∠ADC=180°.
(2)猜想:当点D在何位置时,四边形AECD是正方形?说明理由.

查看答案和解析>>

同步练习册答案