精英家教网 > 初中数学 > 题目详情
13.已知抛物线y=-(x+1)2+m经过点A(0,3),它的解析式为(  )
A.y=-(x-1)2+4B.y=-(x+1)2+3C.y=-(x+1)2-3D.y=-(x+1)2+4

分析 直接利用二次函数图象上点的坐标特征,得出m的值,进而求出答案.

解答 解:∵抛物线y=-(x+1)2+m经过点A(0,3),
∴3=-1+m,
解得:m=4,
故它的解析式为:y=-(x+1)2+4.
故选:D.

点评 此题主要考查了二次函数图象上点的坐标特征,正确将已知点代入是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.已知△ABC的面积为1,D、E分别是AB、AC边上的点,CD、BE交于F点,过点F作FM∥AB,FN∥AC,交BC边于M,N.
(1)如图,当D,E分别是AB,AC边上的中点时,求△FMN的面积;
(2)如图,当$\frac{AD}{DB}$=$\frac{1}{2}$,$\frac{AE}{EC}$=3时,求△FMN的面积;
(3)当$\frac{AD}{DB}$=a,$\frac{AE}{EC}$=b,用含有a,b的代数式表示△FMN的面积.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知对于任意实数x,kx2-2x+k恒为正数,求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.
(1)求点E的坐标;
(2)点M是OB上任意一点,点N是OA上任意一点,是否存在点M、N,使得AM+MN最小?若存在,求出其最小值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.上海世博会区间,某博物馆每周都吸引大量中外游客前来参观,如果游客过多,对馆中的珍贵文物会产生不利影响,但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数,在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系,在这样的情况下.
(1)如果确保每周4万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?
(2)门片价格应该是多少元时门票收入最大,这样每周应有多少人参观?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.函数y=x2-2x-3,当y<0时,x的取值范围为-1<x<3;当-1<x<2时,y的取值范围为-4<y<0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,已知Rt△OAB,∠OAB=60°,∠AOB=90°,O点与坐标系原点重合,若点P在x轴上,且△APB是等腰三角形,则点P的坐标可能有(  )个.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列说法正确的是(  )
A.如果两个三角形全等,则它们是关于某条直线成轴对称的图形
B.如果两个三角形关于某条直线成轴对称,那么它们是全等三角形
C.等边三角形是关于一条边上的中线成轴对称的图形
D.一条线段是关于经过该线段中点的中线成轴对称的图形

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.检查视力时,受检查者应坐在距视力表5米处.当房间较小时,可在距视力表一定距离的地方放一平面镜,让受检查者坐在视力表处,从镜子中辨认表中的字母开口方向,这时受检查者与镜子的实际距离是2.5米.

查看答案和解析>>

同步练习册答案