直线与轴交于点C(4,0),与轴交于点B,并与双曲线交于点。
(1)求直线与双曲线的解析式。
(2)连接OA,求的正弦值。
(3)若点D在轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由。
(1) y=x-4;;(2) ;(3) (6,0)或(20,0).
解析试题分析:(1)把点C的坐标代入y=x+b,求出b的值,得出直线的解析式;把点A(-1,n)代入y=x-4得到n的值,求出A点的坐标,再把将A点代入(x<0)中,求出m的值,从而得出双曲线的解析式;
(2)先过点O作OM⊥AC于点M,根据B点经过y轴,求出B点的坐标,根据勾股定理求出AO的值,根据OC=OB=4,得出△OCB是等腰三角形,求出∠OBC=∠OCB的度数,再在△OMB中,根据正弦定理求出OM的值,从而得出∠OAB的正弦值.
(3)先过点A作AN⊥y轴,垂足为点N,根据AN=1,BN=1,求出AB的值,根据OB=OC=4,求出BC的值,再根据∠OBC=∠OCB=45°,得出∠OBA=∠BCD,从而得出△OBA∽△BCD或△OBA∽△DCB,最后根据,再代入求出CD的长,即可得出答案.
试题解析:(1)∵直线y=x+b与x轴交于点C(4,0),
∴把点C(4,0)代入y=x+b得:b=-4,
∴直线的解析式是:y=x-4;
∵直线也过A点,
∴把A点代入y=x-4得到:n="-5"
∴A(-1,-5),
把将A点代入(x<0)得:m=5,
∴双曲线的解析式是:;
(2)过点O作OM⊥AC于点M,
∵B点经过y轴,
∴x=0,
∴0-4=y,
∴y=-4,
∴B(0,-4),
AO=,
∵OC=OB=4,
∴△OCB是等腰三角形,
∴∠OBC=∠OCB=45°,
∴在△OMB中 sin45°=,
∴OM=2,
∴在△AOM中,
sin∠OAB=;
(3)存在;
过点A作AN⊥y轴,垂足为点N,
则AN=1,BN=1,
则AB=,
∵OB=OC=4,
∴BC=,
∠OBC=∠OCB=45°,
∴∠OBA=∠BCD=135°,
∴△OBA∽△BCD或△OBA∽△DCB,
∴,
∴或,
∴CD=2或CD=16,
∴点D的坐标是(6,0)或(20,0).
考点:反比例函数综合题.
科目:初中数学 来源: 题型:填空题
如图,在平面直角坐标系中,已知直线l:,双曲线。在l上取点A1,过点A1作轴的垂线交双曲线于点B1,过点B1作轴的垂线交于点A2,请继续操作并探究:过点A2作轴的垂线交双曲线于点B2,过点B2作轴的垂线交于点A3,…,这样依次得到上的点A1,A2,A3,…,An,…。记点An的横坐标为,若,则= ,= ;若要将上述操作无限次地进行下去,则不能取的值是__________
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,点A,B分别在轴,轴上,点D在第一象限内,DC⊥轴于点C,AO=CD=2,AB=DA=,反比例函数的图象过CD的中点E。
(1)求证:△AOB≌△DCA;
(2)求的值;
(3)△BFG和△DCA关于某点成中心对称,其中点F在轴上,试判断点G是否在反比例函数的图象上,并说明理由。(
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知反比例函数y=的图象与正比例函数y=kx的图象交于点A(m,﹣2).
(1)求正比例函数的解析式及两函数图象另一个交点B的坐标;
(2)试根据图象写出不等式≥kx的解集;
(3)在反比例函数图象上是否存在点C,使△OAC为等边三角形?若存在,求出点C的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,反比例函数的图象和矩形ABCD在第二象限,AD平行于x轴,且AB=2,AD=4,点C的坐标为(-2,4).
(1)直接写出A、B、D三点的坐标;
(2)若将矩形只向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,求反比例函数的解析式和此时直线AC的解析式y=mx+n.并直接写出满足的x取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某乡要在生活垃圾存放区建一个老年活动中心,这样必须把1 200 m3的生活垃圾运走.
(1)假如每天能运x m3,所需时间为y天,写出y与x之间的函数关系式;
(2)若每辆拖拉机一天能运12 m3,则5辆这样的拖拉机要多少天才能运完?
(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,O为坐标原点,P是反比例函数(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.
(1)求证:线段AB为⊙P的直径;
(2)求△AOB的面积;
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图在平面直角坐标系xOy中,函数(x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).
(1)求一次函数的解析式;
(2)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com