精英家教网 > 初中数学 > 题目详情

如图在平面直角坐标系xOy中,函数(x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).

(1)求一次函数的解析式;
(2)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.

解:(1)将A(m,2)代入(x>0)得,m=2,
∴A点坐标为A(2,2)。
将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2。
∴一次函数解析式为y=2x﹣2。
(2)P点坐标为(3,0),(﹣1,0)。

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

直线轴交于点C(4,0),与轴交于点B,并与双曲线交于点
(1)求直线与双曲线的解析式。
(2)连接OA,求的正弦值。
(3)若点D在轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知图中的曲线是函数 (m为常数)图象的一支.

(1)求常数m的取值范围;
(2)若该函数的图象与正比例函数图象在第一象限的交点为A(2,n),求点A的坐标及反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知双曲线上一点M(1,m)和双曲线上一点N(n,3).
(1)求m、n的值;
(2)求△OMN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线AB过点A(m,0),B(0,n)(其中m>0,n>0).反比例函数的图象与直线AB交于C,D两点,连接OC,OD.

(1)已知m+n=10,△AOB的面积为S,问:当n为何值时,S取最大值?并求这个最大值;
(2)若m=8,n=6,当△AOC,△COD,△DOB的面积都相等时,求p的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,OA=OB,函数的图象与线段AB交于M点,且AM=BM.

(1)求点M的坐标;
(2)求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线与反比例函数的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(-1,m).

(1)求反比例函数的解析式;
(2)若点P(n,1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,△ABC的边AC在x轴上,边BC⊥x轴,双曲线与边BC交于点D(4,m),与边AB交于点E(2,n).

(1)求n关于m的函数关系式;
(2)若BD=2,tan∠BAC=,求k的值和点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图为一个表面分别标有:“A”、“B”、“C”、“D”、“E”、“F”六个字母的正方体的平面展开图如图,则与字母“B”所在的面字相对的面上标有字母“_________”.

查看答案和解析>>

同步练习册答案