精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=

【答案】2 a
【解析】解:作FM⊥AD于M,如图所示:
则MF=DC=3a,
∵四边形ABCD是矩形,
∴∠C=∠D=90°.
∵DC=3DE=3a,
∴CE=2a,
由折叠的性质得:PE=CE=2a=2DE,∠EPF=∠C=90°,
∴∠DPE=30°,
∴∠MPF=180°﹣90°﹣30°=60°,
在Rt△MPF中,∵sin∠MPF=
∴FP= = =2 a;
故答案为:2 a.

本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出∠DPE=30°是解决问题的关键.作FM⊥AD于M,则MF=DC=3a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF中,由三角函数求出FP即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据: ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2

(1)求y与x之间的函数关系式;
(2)若图案中三条彩条所占面积是图案面积的 ,求横、竖彩条的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.

(1)求抛物线的表达式;
(2)直接写出点C的坐标,并求出△ABC的面积;
(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;
(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交 于点F,交过点C的切线于点D.

(1)求证:DC=DP;
(2)若∠CAB=30°,当F是 的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(1,a)是反比例函数y=﹣ 的图象上一点,直线y=﹣ 与反比例函数y=﹣ 的图象在第四象限的交点为点B.

(1)求直线AB的解析式;
(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为( )

A.5
B.7
C.8
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5 cm,且tan∠EFC= ,那么矩形ABCD的周长为cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c的图象如图所示,则下列结论:①b2﹣4ac<0;②a﹣b+c>0;③abc>0;④b=2a中,正确的结论的个数是(  )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案