分析 (1)如图1中,作EH⊥BC于H.想办法求出EH,即可解决问题.
(2)如图1过点B作BG∥AC交AF的延长线于G,先证明△BFG≌△EFA,再证明△ABG≌△ACD,即可解决问题.
(3)如图2中,作DG⊥AC于G,FH⊥BC于H,EM⊥BC于M.设BD=a,DC=CE=2b,则CG=b,AG=a+b,DG=$\sqrt{3}$b,CM=b,EM=$\sqrt{3}$b,FH=$\frac{\sqrt{3}}{2}$b,DH=BH-BD=$\frac{a+3b}{2}$-a=$\frac{3b-a}{2}$,由△AGD∽△DHF,得$\frac{AG}{DH}$=$\frac{DG}{FH}$,即$\frac{a+b}{\frac{3b-a}{2}}$=$\frac{\sqrt{3}b}{\frac{\sqrt{3}}{2}b}$,推出a=b,所以AG=2a,DG=$\sqrt{3}$a,根据AD=$\sqrt{A{G}^{2}+D{G}^{2}}$,求出AD即可解决问题.
解答 (1)解:如图1中,
作EH⊥BC于H.
∵△ABC是等边三角形,
∴∠ECH=60°,
∵EC=DC=2,
∴EH=EC•sin60°=$\sqrt{3}$,
∴S△BEC=$\frac{1}{2}$•BC•EH=$\frac{1}{2}$×$3×\sqrt{3}$=$\frac{3\sqrt{3}}{2}$.
(2)证明:如图1过点B作BG∥AC交AF的延长线于G,
∴∠G=∠EAF,∠CBG=∠ACB=60°,
∴∠ABG=∠ABC+∠CBG=120°=∠ACD,
∵点F是BD中点,
∴BF=DF,
在△BFG和△EFA中,
$\left\{\begin{array}{l}{∠G=∠EAF}\\{∠BFG=∠AFE}\\{BF=EF}\end{array}\right.$,
∴△BFG≌△EFA,
∴BG=AE,AF=FG,
∵AE=EC=CD,
∴BG=CD,
在△ABG和△ACD中,
$\left\{\begin{array}{l}{AB=AC}\\{∠ABG=∠ACD}\\{BG=CD}\end{array}\right.$,
∴△ABG≌△ACD,
∴AD=AG=2AF.
(3)如图2中,作DG⊥AC于G,FH⊥BC于H,EM⊥BC于M.设BD=a,DC=CE=2b,则CG=b,AG=a+b,DG=$\sqrt{3}$b,CM=b,EM=$\sqrt{3}$b,FH=$\frac{\sqrt{3}}{2}$b,DH=BH-BD=$\frac{a+3b}{2}$-a=$\frac{3b-a}{2}$,
∵∠ADF=120°=∠ABD+∠BAD+∠FDH=60°+∠BAD+∠FDH,![]()
∴∠BAD+∠FDH=60°,
∵∠BAD+∠DAG=60°,
∴∠DAG=∠FDH,
∵∠AGD=∠DHF,
∴△AGD∽△DHF,
∴$\frac{AG}{DH}$=$\frac{DG}{FH}$,
∴$\frac{a+b}{\frac{3b-a}{2}}$=$\frac{\sqrt{3}b}{\frac{\sqrt{3}}{2}b}$,
∴a=b,
∴AG=2a,DG=$\sqrt{3}$a,
∴AD=$\sqrt{A{G}^{2}+D{G}^{2}}$=$\sqrt{7}$a,
∴$\frac{BD}{AD}$=$\frac{a}{\sqrt{7}a}$=$\frac{\sqrt{7}}{7}$.
点评 此题是三角形综合题,主要考查了等边三角形的性质,平行线分线段成比例定理,全等三角形的判定和性质,含30°角的直角三角形的性质,本题难度较大,解本题的关键是构造出△BFG≌△EFA,学会利用参数解决问题,属于中考压轴题.
科目:初中数学 来源: 题型:选择题
| A. | y=(x+1)2+3 | B. | y=(x-2)2+3 | C. | y=(x-1)2+5 | D. | y=(x-1)2+3 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1cm,2cm,3cm | B. | 8cm,6cm,4cm | C. | 12cm,5cm,6cm | D. | 2cm,3cm,6cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2.8元 | B. | 2.7元 | C. | 2.6元 | D. | 2.5元 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4n | B. | 4m | C. | 2(m+n) | D. | 4(m-n) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com