精英家教网 > 初中数学 > 题目详情

如图,⊙O的直径AB=6,C为圆周上的一点,BC=3.过C点作⊙O的切线GE,作AD⊥GE于点D,交⊙O于点F.
(1)求证:∠ACG=∠B.
(2)计算线段AF的长.

(1)证明:连接OC,BF.
∵GE是过点C的⊙O的切线,
∴OC⊥GE,即∠ACG+∠OCA=90°.
∵AB是⊙O的直径,AO=OC,
∴∠ACB=90°,∠BAC=∠OCA.
∵∠B+∠CAB=90°,
∴∠B=∠ACG;

(2)解:∵Rt△ACB中,AB=6,BC=3,
∴∠CAB=30°.
∵∠B=∠ACG=60°,AD⊥GE,
∴∠CAD=30°.
∴∠DAB=∠CAD+∠CAB=60°,
∵AB是⊙O的直径,
∴∠AFB=90°,
∵AB=6,
∴AF=AB=3.
分析:(1)连接OC,BF.根据切线的性质得到OC⊥GE,即∠ACG+∠OCA=90°,再根据直径所对的圆周角为直角得到∠ACB=90°,则∠B+∠CAB=90°,而∠BAC=∠OCA,得到∠B=∠ACG.
(2)Rt△ACB中,AB=6,BC=3,得到∠CAB=30°,而∠B=∠ACG=60°,AD⊥GE,则∠CAD=30°,则∠DAB=∠CAD+∠CAB=60°,根据直径所对的圆周角为直角得到∠AFB=90°,所以AF=AB=3.
点评:本题考查了切线的性质:圆的切线垂直于过切点的半径;也考查了含30度的直角三角形三边的关系以及圆周角定理的推论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O的直径AB与弦CD相交于E,
BC
=
BD
,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF.
(2)连接BC,若⊙O的半径为4,cos∠BCD=
3
4
,求线段AD、CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径AB与弦CD(不是直径)相交于E,E是CD的中点,过点B作BF∥CD交AD的延长线于
点F.
(1)求证:BF是⊙O的切线;
(2)连接BC,若⊙O的半径为5,∠BCD=38°,求线段BF、BC的长.(精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB,CD互相垂直,P为  上任意一点,连PC,PA,PD,PB,下列结论:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正确的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•柳州)如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=
92

(1)求OD、OC的长;
(2)求证:△DOC∽△OBC;
(3)求证:CD是⊙O切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是
4
3
cm
4
3
cm

查看答案和解析>>

同步练习册答案