分析 (1)根据重心的定义,由BD、CE是边AC、AB上的中线得到点O为△ABC的重心,然后根据重心的性质易得OC=2OE;
(2)根据三角形面积公式易得S△OCD=2S△CDN=2,再利用重心的性质得OB:OD=2:1,则S△BCD=3S△OCD=6,然后利用AD=CD可得S△ABC=2S△BCD=12.
解答 (1)证明:∵BD、CE是边AC、AB上的中线,
∴点O为△ABC的重心,
∴OC:OE=2:1,
即OC=2OE;
(2)解:∵N是OC的中点,
∴S△OCD=2S△CDN=2,
∵点O为△ABC的重心,
∴OB:OD=2:1,
∴S△BCD=3S△OCD=6,
∵BD为中线,
∴AD=CD,
∴S△ABC=2S△BCD=12.
点评 本题考查了三角形重心:三角形的重心是三角形三边中线的交点.重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了三角形面积公式.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (a+b)2=a2+2ab+b2 | B. | (a-b)(a+b)=a2-b2 | C. | a2+b2=c2 | D. | c2-a2=(c-a)(c+a) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com