精英家教网 > 初中数学 > 题目详情

如图,AD∥BC,∠A=90°,E是AB上一点,AD=BE,F是CD中点.
(1)Rt△ADE与Rt△BEC全等吗?如果是请说明理由;若不全等请添加一个合适条件使其全等并说明理由.
(2)若Rt△ADE与Rt△BEC全等,说明△CED是直角三角形.

解:(1)不全等,添加EF⊥CD,
则Rt△ADE与Rt△BEC全等,
∵F是CD中点且EF⊥CD,
∴CE=DE,
∵AD∥BC,∠A=90°,
∴∠B=∠A=90°,
∵AD=BE,CE=DE,
∴Rt△ADE≌Rt△BEC;

(2)直角三角形,
∵Rt△ADE≌Rt△BEC,
∴∠AED=∠BCE,
∵∠BCE+∠BEC=90°,
∴∠AED+∠BEC=90°,
∴∠CED=180°-90°=90°,
∴△CED是直角三角形.
分析:(1)由AD∥BC,可得∠B=90°,又因为AD=BE,CE=DE,可得Rt△ADE≌Rt△BEC,
(2)是直角三角形,由Rt△ADE≌Rt△BEC得∠AED=∠BCE,从而得出∠AED+∠BEC=90°,则△CDE是直角三角形.
点评:本题主要考查了全等三角形的判定及性质问题,能够熟练掌握,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、如图,AD∥BC,则下列式子成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图:AD∥BC,AB=AC,∠BAC=80°,则∠DAC=
50
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,AD⊥BC,DE∥AB,则∠CDE与∠BAD的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,AD=BC,要得到△ABD≌△CDB,可以添加角的条件:∠
ADB
ADB
=∠
CBD
CBD

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.

查看答案和解析>>

同步练习册答案